Способы прогрева бетона. Оборудование и методы прогрева мерзлых грунтов при производстве земляных работ Как отогреть весной мерзлую землю

Основной целью прогрева бетона является соблюдение правильных условий вывода влаги при проведении работ в зимнее время или при их ограниченных сроках. Принцип действия технологии заключается в поддержке внутри или вокруг толщи раствора повышенной температуры (в пределах 50-60 °С), методы реализации зависят от типа и размера конструкций, марки прочности смеси, бюджета и условий внешней среды. Для достижения нужного эффекта обогрев должен быть равномерным и экономически обоснованным, лучшие результаты наблюдаются при комбинировании.

Обзор методов обогрева

1. Электроды.

Простой и надежный способ электропрогрева, заключающийся в размещении арматуры или катанки толщиной в 0,8-1 см во влажном растворе, образуя с ним единый проводник. Выделение тепла происходит равномерно, зона воздействия достигает половины расстояния от одного электрода к другому. Рекомендуемый интервал между ними варьируется от 0,6 до 1 м. Для запуска работы цепи концы подключают к ИП с пониженным напряжением от 60 до 127 В, превышение этого диапазона возможно только при бетонировании неармированных систем.

Сфера применения включает конструкции с любым объемом, но максимальный эффект достигается при подогреве стен и колонн. Расход электроэнергии в этом случае значительный – 1 электрод требует не менее 45 А, число подключаемых стержней к понижающему трансформатору ограничено. По мере высыхания раствора подаваемое напряжение и затраты возрастают. При заливке ЖБИ технология прогрева электродами требует согласования со специалистами (составляется проект их размещения, исключающий контакт с металлическим каркасом). По окончании процесса стержни остаются внутри, повторная эксплуатация исключена.

2. Закладка проводов.

Суть метода заключается в расположении в толще раствора электрического провода (в отличие от электродов – изолированного), нагреваемого при пропускании тока и равномерно отдающего тепло. В качестве рабочих элементов используется один из следующих видов:

  • ПНСВ – изолированный поливинилхлоридом стальной кабель.
  • Саморегулирующие секционные разновидности: КДБС или ВЕТ.

Применение проводов считается самым эффективным при необходимости заливки перекрытий или фундамента зимой, они практически без потерь преобразуют электрическую энергию в тепловую и обеспечивают ее равномерное распределение.

ПНСВ обходится дешевле, при необходимости он закладывается по всей площади конструкции (длина ограничена только мощностью понижающего трансформатора), для данных целей подойдет сечение от 1,2 до 3 мм. К особенности технологии обогрева относят потребность в использовании установочных проводов с алюминиевой жилой на открытых участках. Подходящими характеристиками обладает кабель АПВ. Схема ПНСВ 1.2 исключает перехлесты, рекомендуемый шаг между соседними кольцами и линиями составляет 15 см.

Саморегулирующие секции (КДБС или ВЕТ) эффективны при обогреве зимой без возможностей задействования трансформатора или подачи 380 В. Их изоляция лучше, чем у ПНСВ, но стоят они дороже. Схема укладки провода в целом аналогична предыдущей, но его длина ограничена, она подбирается из учета размеров конструкции, разрезать его нельзя. При добавлении в нее устройства контроля за силой тока прогрев осуществляется более плавно и экономно. В целом, оба варианта считаются эффективными при бетонировании зимой, к недостаткам относят лишь сложность укладки и невозможность повторного применения.

3. Тепловые пушки.

Суть технологии заключается в повышении температуры воздуха с помощью электрических, газовых, дизельных и других обогревателей. Обрабатываемые элементы закрывают от холода брезентом, создание такого шатра позволяет достичь внутри условий от +35 до 70 °C. Обогрев осуществляется за счет внешнего источника, который без проблем переносится на другое место без потребности в расходе провода или специальной аппаратуры. Из-за сложностей с закрытием крупных объектов и воздействия только на внешние слои этот способ чаще используется при небольших объемах бетонирования или при резком падении температуры. Энергозатраты в сравнении с электродами или ПНСВ приемлемые, при задействовании дизельных пушек возможен обогрев на объектах без электроснабжения.

4. Термоматы.

Принцип действия этой технологии основан на покрытии свежезалитого раствора полиэтиленом и полотнами инфракрасной пленки во влагостойкой оболочке. Термоматы подключаются к обычной сети, величина энергопотребления варьируется в пределах 400-800 Вт/м2, при достижении границы в +55 °С они выключаются, что позволяет снизить затраты на электропрогрев бетона. Максимальный эффект от применения достигается зимой, в том числе при комбинировании с химическими добавками.

Риск замерзания влаги внутри ЖБИ исключается через 12 часов, процесс полностью автономный. В отличие от проводов ПНСВ термоматы без проблем контактируют с открытым воздухом и влагой, помимо бетонных конструкций они успешно используются для прогрева грунта.

При правильном уходе (отсутствие нахлестов, выполнение изгибов строго по отведенным линиям, защите полиэтиленом) ИК-пленки выдерживают не менее 1 года активной эксплуатации. Но при всех плюсах технология плохо подходит для обогрева массивных монолитов, воздействие матов локальное.

5. Греющая опалубка.

Принцип действия аналогичен с предыдущим: между двумя листами влагостойкой фанеры размещается инфракрасная пленка или изолированные асбестом провода, выделяющие тепло при подключении к сети. Этот способ обеспечивает прогрев в зимнее время на глубину до 60 мм, благодаря локальному воздействию исключен риск растрескивания или перенапряжения. По аналогии с матами эти нагревательные элементы имеют термозащиту (биметаллические датчики с автовозвратом). Сфера применения включает конструкции с любым наклоном, лучшие результаты наблюдаются при заливке монолитных объектов, в том числе при ограниченных сроках строительства, но простой технологию назвать нельзя. При бетонировании фундамента в греющую опалубку заливают раствор с температурой не ниже +15 °C, грунт нуждается в предварительном обогреве.

6. Индукционный метод.

Принцип действия основан на образовании тепловой энергии под воздействием вихревых токов, способ хорошо подходит для колонн, балок, опор и других вытянутых элементов. Индукционная обмотка размещается поверх металлической опалубки и создает электромагнитное поле, в свою очередь оказывающее влияние на арматурные стержни каркаса. Обогрев бетона осуществляется равномерно и качественно при среднем расходе энергии. Подойдет также для предварительной подготовки щитов опалубки зимой.

7. Пропаривание.

Промышленный вариант, для реализации этого способа требуется двухстенная опалубка, не только выдерживающая массу раствора, но и подводящая к поверхности горячий пар. Качество обработки более чем высокое, в отличие от остальных методов, при пропарке обеспечиваются максимально подходящие условия для гидратации цемента, а именно – влажная горячая среда. Но из-за сложности эта методика используется редко.

Сравнение преимуществ и ограничений технологий прогревания

Способ Оптимальная сфера применения Преимущества Недостатки, ограничения
Электродами Заливка вертикальных конструкций Быстрый монтаж и прогрев, достаточно размещения электрода в бетоне и подключения его к источнику переменного тока Значительные энергозатраты – от 1000 кВт на 3-5 м3
ПНСВ Фундаменты и перекрытия при бетонировании зимой Высокая эффективность, равномерность. Обогрев проводом позволяет достичь 70% прочности за несколько дней Потребность в понижающем трансформаторе и проводе для холодных концов
ВЕТ или КДБС То же, плюс работа от простой сети Высокая стоимость кабеля, ограничение в длине секций
Тепловыми излучателями Конструкции с небольшой толщиной Возможность контроля температуры, применение при резком похолодании, минимум проводов, относительно низкие энергозатраты Воздействие осуществляется локально, качественный обогрев происходит только во внешних слоях
Термоматами Грунт перед заливкой раствора, перекрытия Многократное применение, возможность контроля за температурой смести, достижение 30% марочной прочности в течении суток Высокая стоимость матов, наличие подделок
Греющей опалубкой Объекты быстрого возведения (совмещение с технологией скользящей опалубки) Обеспечение равномерного прогрева, возможность качественного замоноличивания стыков Типовые размеры, высокая цена, средний КПД
Индукционной обмоткой Колонны, ригели, балки, опоры Равномерность Не подходит для перекрытий и монолитов
Пропаривание Объекты промышленного строительства Хорошее качество прогрева Сложность, дороговизна

Страница 10 из 18

Разработка грунта, связанная с рытьем траншеи в зимних условиях, осложняется необходимостью предварительной подготовки и отогрева мороженого грунта. Глубина сезонного промерзания грунта определяется по данным метеорологических станций.
В городских условиях, при наличии большого количества действующих кабельных линий и других подземных коммуникаций применение ударных инструментов (отбойных молотков, ломов, клиньев и др.) невозможно из-за опасности механического повреждения действующих кабельных линий и других подземных коммуникаций.
Поэтому мерзлый грунт до начала работ по рытью траншеи в зоне действующих кабельных линий должен быть предварительно отогрет с тем, чтобы земляные работы вести лопатами без применения ударного инструмента.
Отогрев грунта может производиться электрическими рефлекторными печами, электрическими горизонтальными и вертикальными стальными электродами, электрическими трехфазными нагревателями, газовыми горелками, паровыми и водяными иглами, горячим песком, кострами и т. д. Способы отогрева грунта, при которых нагревательные иглы вводятся в мерзлый грунт путем бурения скважин либо их забивки, не получили применения, так как этот способ эффективен и применение его может быть оправдано экономически при глубине разрытия более 0,8 м, т. е. на глубине, которая для кабельных работ не используется. Отогрев грунта может также вестись токами высокой частоты, однако и этот способ пока не получил практического применения ввиду сложности оборудования и низкого коэффициента полезного действия установки. Независимо от принятого способа отогреваемая поверхность предварительно очищается от снега, льда и верхних покровов основания (асфальт, бетон).

Отогрев грунта электрическими токами промышленной частоты при помощи стальных электродов, уложенных горизонтально на мороженый грунт, заключается в создании цепи электрического тока, где отмораживаемый грунт используется как сопротивление.
Горизонтальные электроды из полосовой, угловой и любых других профилей стали длиной 2,5-3 м укладывают горизонтально на мерзлый грунт. Расстояние между рядами электродов, включаемых в разноименные фазы, должно быть 400 - 500 мм при напряжении 220 В и 700-800 мм при напряжении 380 В. Ввиду того что мерзлый грунт плохо проводит электрический ток, поверхность грунта засыпается слоем опилок, смоченных в водном растворе соли толщиной 150-200 мм. В начальный период включения электродов основное тепло передается в грунт от опилок, в которых под влиянием электрического тока возникает интенсивный разогрев. По мере разогрева грунта, повышения его проводимости и проходящего через грунт электрического тока интенсивность разогрева грунта повышается.
С целью уменьшения потерь тепла от рассеивания слой опилок уплотняют и накрывают деревянными щитами, матами, толем и пр.
Расход электрической энергии для отогрева грунта с помощью стальных электродов в большой степени определяется влажностью грунта и составляет от 42 до 60 кВт-ч на 1 м 3 мороженого грунта при длительности отогрева от 24 до 30 ч.
Работы по размораживанию грунта электрическим током должны производиться под надзором квалифицированного персонала, ответственного за соблюдение режима отогрева, обеспечения безопасности работ и исправности оборудования. Указанные требования и сложности их выполнения, естественно, ограничивают возможности применения этого способа. Лучшим и более безопасным методом является применение напряжения до 12 В.

Рис. 15. Конструкция трехфазных нагревателей для отогрева грунта

а - нагреватель; б - схема включения; 1 - стержень стальной диаметром 19 мм, 2 -труба стальная диаметром 25 мм, 3 -втулка стальная диаметром 19-25 мм, 4 - контакты медные сечением 200 мм 2 , 5 - полоска стальная 30X6 мм 2 .

Электрические трехфазные нагреватели позволяют произвести отогрев грунта при напряжении 10 В. Элемент нагревателя состоит из трех стальных стержней, каждый стержень вставлен в две стальные трубы, общая длина которых на 30 мм меньше длины стержня; концы стержня сварены с концами этих труб.
Пространство между стержнем и внутренней поверхностью каждой трубы засыпано кварцевым песком и для герметизации залито жидким стеклом (рис. 15)- Концы трех труб, расположенных в плоскости А-Л, соединены между собой приваренной к ним полоской стали, образуя нейтральную точку звезды нагревателя. Три конца труб, расположенных в плоскости Б-Б, при помощи закрепленных на них медных зажимов присоединяются через специальный понизительный трансформатор мощностью 15 кВ-А к электрической сети. Нагреватель укладывается непосредственно на грунт и засыпается талым песком толщиной 200 мм. Для уменьшения потерь тепла отогреваемый участок дополнительно укрывают сверху матами из стекловолокна.
Расход электрической энергии для отогрева 1 м 3 грунта при этом методе составляет 50-55 кВт-ч, а время отогрева 24 ч.

Электрическая рефлекторная печь. Как показал опыт ведения ремонтных работ в условиях городских сетей, наиболее удобным, транспортабельным и быстрым при одних и тех же условиях, определяемых степенью промерзания, характером отогреваемого грунта и качеством покрытия, является метод отогрева электрическими рефлекторными печами. В качестве нагревателя в печи применяется нихромовая или фехралевая проволока диаметром 3,5 мм, навитая спиралью на изолированную асбестом стальную трубу (рис. 16).
Рефлектор печи изготовляется из согнутого по оси в параболу с расстоянием от отражающего рефлектора до спирали (фокус) 60 мм алюминиевого, дюралюминиевого или стального хромированного листа толщиной 1 мм. Рефлектор отражает тепловую энергию печи, направляя ее на участок отогреваемого мороженого грунта. Для защиты рефлектора от механических повреждений печь закрывается стальным кожухом. Между кожухом и рефлектором имеется воздушный промежуток, что сокращает потери тепла от рассеивания.
Рефлекторная печь присоединяется к электрической сети напряжением 380/220/127 В.
При отогреве грунта собирается комплект из трех однофазных рефлекторных печей, которые соединяют в звезду или треугольник соответственно напряжению сети. Площадь отогрева одной печи составляет 0,4X1,5 м 2 ; мощность комплекта печей 18 кВт.


Рис. 16. Рефлекторная печь для отогрева мороженого грунта.
1 - нагревательный элемент, 2 - рефлектор, 3 - кожух; 4 - контактные зажимы
Расход электроэнергии для отогрева 1 м 3 мороженого грунта составляет примерно 50 кВт-ч при продолжительности отогрева от 6 до 10 ч.
При пользовании печами необходимо также обеспечить безопасные условия производства работ. Место отогрева должно быть ограждено, контактные зажимы для присоединения проводом закрыты, а спирали течи не должны касаться грунта.

Отогрев мороженого грунта огнем. Для этой цели используется как жидкое, так и газообразное топливо. В качестве жидкого топлива применяется солярное масло. Расход его составляет 4-5 кг на 1 м 3 отогретого грунта. Установка состоит из коробов и форсунок. При длине коробов 20-25 м установка за сутки дает возможность отогреть грунт на глубине 0,7-0,8 м.
Процесс подогрева длится 15-16 ч. В течение остального времени суток оттаивание грунта происходит за счет аккумулированного тепла его поверхностным слоем.
Более эффективным и экономическим топливом для отогрева грунта является газообразное.
Газовая горелка, применяемая для этой цели, представляет собой отрезок стальной трубки диаметром 18 мм со сплюснутым конусом. Полусферические короба изготовляют из листовой стали толщиной 1,5-2,5 мм. Для экономии (потерь тепла короба обсыпают теплоизоляционным слоем грунта толщиной до 100 мм. Стоимость отогрева грунта газовым топливом составляет в среднем 0,2-0,3 руб/м 3 .
Отогрев грунта кострами применяется при незначительном объеме работ (рытье котлованов и траншеи для вставки). Костер разводят после расчистки места от снега и льда. Для большей эффективности отогрева костер накрывают листами железа толщиной 1,5-2 мм. После того как грунт отогрет на глубину 200-250 мм, что устанавливается специальным стальным зондом, дают костру догореть, после чего выбирают лопатами оттаявший грунт. Затем на дне образовавшейся впадины вновь разводят костер, повторяя эту операцию до тех пор, пока мороженый грунт не будет выбран на всю глубину. В ходе работ по отогреву грунта необходимо следить за тем, чтобы вода от тающего снега и льда не заливала костер.
В процессе отогрева грунта действующие кабели могут быть повреждены в результате воздействия теплонагревателя. Как показал опыт, для надлежащей защиты действующих кабелей при отогреве грунта необходимо, чтобы между нагревателем и кабелем сохранялся слой земли толщиной не менее 200 мм в течение всего времени отогрева.

Трудоемкость извлечения мерзлого грунта крайне велика по причине его значительной механической прочности. К тому же замерзшее состояние грунта осложняет задачу по его выемке из-за невозможности задействования некоторых типов землеройных и землеройно-транспортных машин, снижению производительности и ускоренному износу рабочих частей оборудования. И все же одним достоинством мерзлый грунт обладает - рыть котлованы в нем можно без устройства откосов.

Существует четыре основных способа проведения выемки грунта в холодное время года:

  • защита земельного участка работ от промерзания с дальнейшим использованием обычных землеройных машин;
  • предварительное рыхление и выемка замерзшего грунта;
  • прямая разработка грунта в замерзшем состоянии, т.е. без какой-либо подготовки;
  • доведение до талого состояния и последующая выемка.

Подробно рассмотрим каждый из приведенных способов.

Предохранение грунтов от промерзания

Защиту от низких температур грунту обеспечивают путем взрыхления верхнего слоя, застилкой утеплительными материалами и заливкой водных растворов соли.

Распахивание и боронование земельного участка проводится в секторе дальнейших работ по извлечению грунта. Результатом такого рыхления становится ввод большого количества воздуха в грунтовые слои, образование замкнутых воздушных пустот, препятствующих теплоотдаче и сохраняющих положительную температуру в грунте. Распашка проводится рыхлителями или факторными плугами, ее глубина - 200-350 мм. Следом выполняется боронование в одном или двух направлениях (перекрестных) на глубину 150-200 мм, что в итоге повышает термоизоляционные свойства грунта как минимум на 18-20%.
Роль утеплителя при укрывании участка будущих работ выполняют дешевые местные материалы - сухой мох, опилки и стружки, опавшие листья деревьев, шлак и маты из соломы, можно воспользоваться пвх пленкой. Насыпные материалы размещаются на поверхности 200-400 мм слоем. Утепление поверхности грунта производится чаще всего на небольших земельных участках.

Мерзлый грунт - рыхление и выемка

Чтобы снизить механическую прочность зимнего грунта применяются методы его механической и взрывной обработки. Извлечение взрыхленной таким образом земли после проводится обычным способом - при помощи землеройных машин.

Механическое рыхление. В процессе его осуществления грунт режется, скалывается и раскалывается вследствие нагрузок статического или динамического характера.

Статические нагрузки на мерзлый грунт производится металлическим инструментом режущего типа - зубом. Специальная конструкция с гидравлическим приводом, оборудованная одним зубом и более, проводится по участку работ будучи размещенной на гусеничному экскаваторе. Такой метод позволяет снимать грунт послойно на глубину до 400 мм за каждый проход. В процессе рыхления оборудованная зубом установка прежде протягивается параллельно предыдущим проходам с отступом 500 мм от них, затем ее проводят поперечно им под углом от 60 до 90 о. Объемы выемки мерзлого грунта при этом достигают 20 кубометров в час. Послойная статическая разработка мерзлой земли обеспечивает применение установок рыхления на любой глубине промерзания грунта.

Ударные нагрузки на грунтовые участки позволяют снизить механическую прочность замерзшей земли благодаря динамическому воздействию. Применяются молоты свободного падения, обеспечивающие раскалывание и рыхление, или молоты с направленным действием для рыхления расколом. В первом случае используется молот в виде шара или конуса наибольшей массы в 5 т - его канатом закрепляют на стреле экскаватора и после подъема до пяти-восьмиметровой высоты сбрасывают на участок работ. Шарообразные молоты лучше всего подходят для песчаников и супесей, на глинистых почвах эффективны конические молоты - при условии, что глубина промерзания не превышает 700 мм.

Направленное действие на мерзлый грунт осуществляют дизель-молоты, установленные на трактор или экскаватор. Они применяются на любых грунтах при условии глубины промерзания не более 1300 мм.

Снижение прочности мерзлой земли путем взрыва наиболее эффективно - этот метод позволяет выполнять зимнюю выемку грунта на глубине от 500 мм и при потребности извлечения значительных объемов. На незастроенных участках выполняется открытый подрыв, а на частично застроенных необходимо предварительно выставить укрытия и ограничители взрыва - массивные плиты из металла или железобетона. Взрывчатое вещество закладывается в щель или шпур (при глубине рыхления до 1500 мм), а при потребности выемки грунта на большей глубине - в щели и скважины. Для нарезания щелей применяются буровые или фрезерные машины, щели выполняются на 900-1200 мм дистанции друг от друга.

Взрывчатка укладывается в среднюю (центральную) щель, а расположенные по соседству щели обеспечат компенсацию взрывного сдвига мерзлого грунта и погасят ударную волну, тем самым препятствуя разрушениям вне зоны работ. В щель закладывается удлиненный заряд или несколько коротких зарядов сразу, затем ее заполняют песком с утрамбовкой. После взрыва мерзлый грунт в секторе производства работ будет полностью раздроблен, при этом стенки траншеи или котлована, создание которых и было целью выемки земли, останутся неповрежденными.

Разработка мерзлого грунта без его подготовки

Существует два способа прямой разработки грунта в условиях низких температур - механический и блочный.

Технология механической разработки мерзлых грунтов базируется на силовом воздействии, в некоторых случаях включающим в себя удар и вибрацию. В ходе его осуществления используются как обычные машины для землеройных работ, так и оснащенные специальным инструментом.

На небольших глубинах промерзания работы по извлечению грунта применяются обычные землеройные машины: экскаваторы с прямым или обратным ковшом; драглайны; скреперы; бульдозеры. Одноковшовые экскаваторы могут оснащаться специальным навесным оборудованием - ковшами с захватными клещами и виброударными зубьями. Такое оборудование позволяет воздействовать на мерзлый грунт посредством избыточного режущего усилия и вести его послойную разработку, соединив в одной рабочей операции рыхление и экскавацию.

Послойное извлечение грунта выполняется специальной землеройно-фрезерной установкой, срезающей с участка работ слои шириной 2600 мм и глубиной до 300 мм. В конструкции это машины предусмотрено бульдозерное оборудование, обеспечивающие перемещение срезанного грунта.

Суть блочной разработки грунтов заключается в резке мерзлого грунта на блоки с последующим их извлечением при помощи трактора, экскаватора или строительного крана. Блоки нарезаются путем пропиливания грунта резами, перпендикулярными между собой. Если земля промерзла неглубоко - до 600 мм - то для извлечения блоков достаточно выполнить прорезы вдоль участка. Щели прорезаются на 80% глубины, на которую промерз грунт. Этого вполне достаточно, поскольку слой со слабой механической прочностью, расположенный между промерзшей зоной грунта и зоной, сохраняющей положительную температуру, не помешает отделению грунтовых блоков. Дистанция между щелями-прорезями должна примерно на 12% быть меньше, чем кромочная ширина ковша экскаватора. Извлечение грунтовых блоков производится при помощи экскаваторов с обратной лопатой, т.к. выгружать их из ковша прямой лопаты довольно трудно.

Способы оттаивания мерзлого грунта

Они классифицируются по направлению подачи тепла в грунт и виду используемого теплоносителя. В зависимости от направления подачи тепловой энергии существует три способа разморозить грунт - верхний, нижний и радиальный.

Верхняя подача тепла в землю наименее эффективна - источник тепловой энергии находится в воздушном пространстве и активно охлаждается воздухом, т.е. значительная часть энергии расходуется попусту. Однако этот способ оттаивания организоваться проще всего и в этом его преимущество.

Процедура оттаивания, проводимая из-под земли, сопровождается минимальными затратами энергии, поскольку тепло распространяется под прочным слоем льда на поверхности грунта. Главный минус данного способа - потребность выполнения сложных подготовительных мер, поэтому он применяется редко.


Радиальное распространение тепловой энергии в толще грунта осуществляется при помощи вертикально утопленных в землю тепловых элементов. Эффективность радиального оттаивания находится между результатами верхнего и нижнего прогревания грунта. Для осуществления этого способа требуются несколько меньшие, но все же достаточно высокие объемы работ по подготовке прогрева.

Разморозка грунта зимой проводится с использованием огня, электрических термоэлементов и горячего пара.
Огневая методика применима для рытья относительно узких и неглубоких траншей. На поверхности участка работ выставляется группа коробов из металла, каждый из которых представляет собой разрезанный пополам усеченный конус. Они ставятся разрезанной стороной на землю вплотную друг к другу и образуют галерею. В первый короб закладывается топливо, которое затем поджигается. Галерея из коробов становится горизонтальной вытяжной трубой - вытяжка идет из последнего короба, а продукты сгорания движутся по галерее и обогревают грунт. Чтобы понизить потери тепла от контакта корпуса коробов с воздухом, они засыпаются шлаком или талым грунтом с участка, работы на котором проводились ранее. Образовавшуюся по окончании прогрева полосу размороженного грунта необходимо засыпать опилками или застелить пвх пленкой, чтобы аккумулированное тепло способствовало дальнейшему оттаиванию.

Электрический прогрев мерзлого грунта базируется на способности нагрева материалов при пропуске через них электротока. С этой целью применяются вертикально и горизонтально ориентированные электроды.

Горизонтальное оттаивание производится электродами из круглой или полосовой стали, уложенной на грунт - чтобы подключить к ним электропровода, противоположные концы стальных элементов загибают на 150-200 мм. Прогреваемый участок с размещенными на нем электродами засыпается опилками (толщина слоя - 150-200 мм), предварительно смоченными солевым раствором (концентрация соли - 0,2-0,5%) в количестве, равном исходной массе опилок. Задача опилок, пропитанных солевым раствором - проводить ток, поскольку мерзлый грунт в начальной стадии работ ток проводить не будет. Сверху слой опилок закрывается пленкой пвх. По мере прогрева верхний грунтовый слой становится проводником тока между электродами и интенсивность оттаивания значительно возрастает - прежде размораживается средний слой грунта, а затем и расположенные ниже. По мере включения слоев грунта в проведение электротока слой опилок начинается выполнять вторичную задачу - сохранение тепловой энергии в участке работ, для чего необходимо укрыть опилки деревянными щитами или толем. Оттаивание мерзлого грунта горизонтальными электродами производится на глубину промерзания до 700 мм, затраты электроэнергии при обогреве кубометра земли составляют 150-300 МДж, опилочный слой прогревается до 90 о С, не более.

Вертикальное электродное оттаивание производится при помощи стержней, изготовленных из арматурной стали и имеющих один острый конец. Если глубина промерзания грунта равна 700 мм, стержни вбиваются прежде на глубину 200-250 мм шахматным порядком, а после оттаивания верхнего слоя их утапливают на большую глубину. В процессе работ по вертикальному размораживанию грунта требуется устранять снег, накопившийся на поверхности участка, засыпать его опилками, смоченными солевым раствором. Процесс прогрева идет также, как и при горизонтальном оттаивании с применением полосовых электродов - по мере оттаивания верхних слоев важно периодически погружать электроды дальше в грунт до глубины 1300-1500 мм. По окончании вертикального оттаивания мерзлого грунта электроды извлекаются, но вся площадка остается под слоем опилок - еще 24-48 часов грунтовые слои будут размораживаться самостоятельно благодаря накопленной тепловой энергии. Затраты электроэнергии на работы по вертикальному оттаиванию немного ниже, чем при выполнении горизонтального размораживания.

Для электродного обогрева грунта по направлению снизу вверх необходима предварительная подготовка скважин - их бурят на 150-200 мм глубже, чем глубина промерзания. Скважины располагаются в шахматном порядке. Данный способ характеризуется меньшими затратами электроэнергии - около 50-150 МДж на кубометр грунта.

Стержни электродов вводятся в подготовленные скважины, достигая не промерзшего слоя земли, поверхность участка засыпается отпилками, смоченными солевым раствором, поверх укладывается пластиковая пленка. В результате процесс оттаивания идет в двух направлениях - сверху вниз и снизу вверх. Данный метод оттаивания мерзлого грунта осуществляется редко и исключительно при необходимости срочно разморозить участок для выемки земли.


Оттаивание паром проводится при помощи специальных приспособлений - паровых игл, выполненных из металлических труб диаметром 250-500 мм, по которым в грунт вводится горячий пар. Нижняя часть паровой иглы оборудуется металлическим наконечником, содержащим множество 2-3 мм отверстий. К верхней (полой) части трубы-иглы подключается резиновый шланг, снабженный краном. Для установки паровых игл в грунте пробуриваются скважины (шахматный порядок, дистанция 1000-1500 мм) протяженностью 70% от требуемой глубины оттаивания. На отверстия скважины одеваются металлические колпаки, оснащенные сальниками, через которые будет пропущена паровая игла.

После установки игл по шлангу в них под давлением 0,06-0,07 МПа подается пар. Поверхности оттаиваемого участка земли закрывается слоем опилок. Потребление пара на прогрев кубометра грунта - 50-100 кг, по расходу тепловой энергии этот способ в 1,5-2 раза более затратный по сравнению с прогревов заглубленными электродами.

Способ оттаивания мерзлого грунта при помощи контактных электронагревателей внешне схож с паровым размораживанием. В металлические полые иглы, длиной порядка 1000 мм и диаметром не более 60 мм, устанавливаются нагревательные элементы с изоляцией от металлического корпуса иглы. При подключении электропитания нагревательный элемент сообщает тепловую энергию корпусу иглы-трубы, а она - слоям грунта. Тепловая энергия в процессе прогрева распространяется радиально.

При включений с помощью катодов участка грунта в электрическую цепь через него может быть пропущен нагревающий его ток напряжением 120, 220 и 380 в.

Электропроводность грунта зависит от его влажности (рис.3, а), состояния и температуры влаги, концентрации находятся в грунте растворов солей и кислот (рис. 3, б), строения и температуры грунта (рис. 3, в) и т. п.

Сложность строения грунта происходящих в нем физических явлений и изменений, связанных силовыми процессами, значительно усложняет теоретическую сторонy электропрогрева грунта, которая находится пока еще в стадии проработки.

Рис. 1. Установка горизонтальных (струнных) электродов на мерзлый грунт с засыпкой опилками
1 - мерзлой грунт; 2 - горизонтальные (струйные) электроды диаметром 12-16 мм; 3 - провода, подводящие ток; 4 - опилки, смоченные раствором соли; 5 - верхнее утепление (толь, деревянные щиты, маты и т. п.)

Рис. 2. Установка вертикальных (стержневых) электродов в мерзлый грунт с засыпкой опилками
1 - вертикальные электроды; 2 - провода, подводящие ток; 3 - опилки, смоченные раствором соли, 4-верхнее утепление (толь, деревянные шиты, маты и т. п.)

Оттаивание грунта выполняют при помощи горизонтальных (срунных) и вертикальных (стержневых и глубинных) электродов. При оттаивании горизонтальными электродами (рис. 1) поверхность отогреваемого участка грунта покрывают 15-25-см слоем, смоченных водным раствором соли (хлористого натрия,кальции, медного купороса и др.) имеющих назначение лишь приводить ток и отогреть верхний слой мерзлого грунта, так как последний даже при напряжении 380 в тока практически не пропускает.

При горизонтальных электродах тепло передается первоначально грунту лишь от нагревающегося слоя опилок. Только верхний незначительной толщины слой грунта, прилегающий к электродам, включается в электроцепь и является сопротивлением, в котором выделяется тепло.

Расстояние между рядами электродов, включенными в разные фазы, составляет 40-50 см при напряжении 220 в и 70-80 см при напряжении 380 в. Применение горизонтальных электродов целесообразно при отогревании промерзших оснований и небольшой (до 0,5-0,7 м) глубине промерзания, а также в случаях, когда вертикальные (стержневые) электроды не могут быть применены вследствие малой электропроводности грунта или невозможности забивки их в грунт.

При оттаивании вертикальными стержневыми электродами влажные опилки служат вначале побудителем к прогреву верхнего слоя грунта, который по мере оттаивания включается в электрическую цепь, после чего опилки только уменьшают теплопотери оттаиваемого грунта. Вместо опилок побудителем могут служить растворы солей, заливаемые в бороздки в грунте, пробитые зубилом между всеми электродами на глубину 6 см.

При укрытии поверхности отогреваемого грунта слоем сухих опилок, как показывает практика, устройство таких бороздок дает хорошие результаты.
Применение вертикальных электродов более эффективно при глубине мерзлого грунта более 0,7 м, а также при невозможности обеспечения должного контакта между горизонтальными электродами и грунтом. В твердые (глинистые и песчаные грунты с влажностью более 15-20%) электроды забивают на глубину 20-25 см, и затем погружают глубже по мере оттаивання грунта (примерно через каждые 4-5 час).

Расстояние между электродами назначается от 40 до 70 см в зависимости от напряжения тока, характера и температуры грунта. При оттаивании на глубину 1,5 м рекомендуется иметь два комплекта электродов - короткие и длинные; по оттаивании грунта на глубину коротких электродов они заменяются длинными. Отогрев грунта на глубину 2 м и более следует производить в несколько приемов, послойно с периодическим удалением оттаявших слоев при выключенном токе. В целях экономии электроэнергии и максимального использования мощности следует стремиться, чтобы к концу оттаивания средним температура грунта не превышала +5° и максимальная +20°, и прогрев следует вести участками, периодически выключая ток.

Рис. 3. Изменение удельного сопротивления грунта в зависимости
а - от влажности грунта из красной глины, б - от содержаний NaCi в глинистом грунте при 30% его влажности (по весу), 8 - от температуры грунта при влажности 18,6%

Установка для оттаивания грунта состоит из щитов и софитов (по 4-5 на каждый распределительный щит) для подключения электродов к сети.

При применении глубинных электродов оттаивание мерзлого грунта производят снизу вверх к дневной его поверхности. Для этого электроды из круглой стали диаметром 12-19 мм (в зависимости от их длины и твердости грунта) в шахматном порядке забивают сквозь всю толщу мерзлого слоя на 15-20 см в талый грунт. В начале оттаивания электрический ток, проходящий в талом грунте, нагревает его и оттаивает расположенную непосредственно лад ним часть мерзлого слоя. Таким образом, тепловой поток, постепенно увеличиваясь по толщине снизу вверх, последовательно отогревает мерзлый грунт, причем почти все выделяемое током тепло используется для отаивания мерзлого слоя.
Такой способ оттаивания, помимо уменьшении теплопотерь, дает ряд других выгод.

Как известно, экскаваторы могут разрабатывать без предварительнoгo рыхления мерзлую корку грунта толщиной до 25-40 см, Что позволяет соответственно уменьшить глубину оттаиваемого грунта. Так как верхние слои грунта обычно являются наиболее сложными и энергоемкими, то разработка их в неоттаявшем состоянии снижает расход электроэнергии и ускоряет производство работ.

Применение более высокого напряжения дает возможность увеличивать расстояние между электродами. Последнее при напряжении 220 в принимают в 0,5 м, а при 380 в уже 0,7 м.
Нижний конец электрода заостряют, а в верхнем просверливают сквозное отверстие диаметром 3-4 мм, через которое пропускают Медный голый провод длиной 25-30 см; один конец провода приваривают к электроду, а другой присоединяют к электросети с последующим чередованием фаз.

При затруднительности забивки электродов предварительно проходят скважины диаметром, который на 1-2 мм меньше принятого диаметра электрода.
По опытным данным суглинки с влажностью 18% при глубине промерзания 1,5 м и напряжении тока 220 в оттаивают в течение примерно 16 час.
Отогреваемую площадку выделяют переносным ограждением и умножают предупредительными сигналами с категорическим запрещением входа на нее.
При применении любого способа отогрева грунта необходимо строго соблюдать правила, изложенные в специальной «Инструкции по применению электропрогрева в строительстве».

Оттаивание токами высокой частоты. Мерзлый грунт проницаем для токов высокой частоты, и отогревание его Происходит за счет тепла, выделяемого в грунте при помещении его и переменное электрическое поле высокой частоты.
Генератор высокой частоты состоит из повышающего трансформатора, выпрямителя, генераторных ламп, конденсаторов и колебательного контура. Передвижная установка монтируется в автоприцепе и питается от сети напряжением 220-380 в или от передвижной электрической станции.
Означенный способ возможен при небольшом объеме работ, разработке траншей и особенно при аварийных работах, когда срок их выполнения является решающим фактором.

Работа с грунтом зимой осложняется необходимостью его предварительного прогрева перед началом работ. Одним из способов прогрева грунта в зимнее время является использование термоэлектрических матов.

Технология размораживания грунтов с применением термоматов основана на тепловом воздействии контактным способом и дополнительного воздействия инфракрасного излучения, глубоко проникающего через промерзшие слои почвы. Прогрев происходит одновременно сразу на всю глубину промерзания (использование проникающих свойств инфракрасной энергии).

Термоматы для прогрева грунта - это полностью готовые устройства, имеющее нагреватель, теплоизоляцию, датчики регулировки температуры и грязе-водонепроницаемую оболочку. Стандартные размеры термомата 1,2 x 3,2 м, мощностью 400 Вт/м2. Термоэлектрический мат для прогрева грунта имеет низкую стоимость, прост в подключении и эксплуатации, имеет низкое энергопотребление - 6,4 кВт/час на стандартную площадь 16 м2. Время прогрева грунта на глубину 150 см, исходя из практики, составляет от 20 до 48 часов.

Прогрев грунта в зимнее время термоматами

Рассмотрим на примере как можно прогреть грунт в зимнее время с использованием термоматов.

Условия проведения эксперимента

    Температура воздуха: -20 °С.

    Начальная температура грунта: -18 °С.

    Термомат 1,2*3,2 м, мощностью 400 Вт/м.

Цель

    Быстро прогреть грунт на глубину 60 см.

Требования

    Дешево, низкое энергопотребление, простота в монтаже эксплуатации.

Этапы прогрева грунта термоматами

1. Подготовительный этап

На подготовительном этапе проводится расчистка участка от снега, поверхность максимально выравнивается (выступающие элементы срезаются, ямы засыпаются песком). Производится расчёт количества и параметров термоматов.

2. Основной этап

    На подготовленную площадку укладываются полиэтиленовая пленка.

    Осуществляется подключение термоматов к питающему проводу по «параллельной» схеме.

    Подается электропитание и осуществляется прогрев.

Прогрев грунта в зимнее время термоматами происходит в автоматическом режиме. В первые часы, всё выделенное тепло поглощается грунтом и термоматы работают не отключаясь, затем с прогревом поверхности грунта начинает повышаться температура на греющей поверхности термомата и при её достижении 70 °С секции отключаются. Повторное включение секции термомата происходит при достижении нижнего температурного порога (55-60 °С). В таком режиме термоматы работают до их отключения от электросети.

Практика показывает, что для прогрева грунта на глубину 60 см. необходимо от 20 до 32 часов. Следует принимать во внимание, что на время прогрева влияют начальные условия (температура воздуха и грунта) и свойства грунта (теплопроводность).

Во избежание перегрева и возможного прогара термомата, необходимо обеспечить достаточный теплообмен (плотное прилегание термомата к прогреваемой поверхности). Не допускается размещение между матом и обогреваемым объектом, каких-либо теплоизолирующих материалов, препятствующих передаче тепловой мощности к обогреваемому объекту.

3. Заключительный этап

После окончания прогрева грунта необходимо отключить подачу электропитания, после чего термоматы можно аккуратно убирать. Срок службы термомата напрямую зависит от бережного отношения к нему.

Не допускается хождение по термоматам и бросание тяжелых и острых предметов на его поверхность. Складывать термомат можно только по специальным линиям сгиба. Размеры термомата для прогрева грунта в сложенном состоянии 110 см * 120 см * 6 см. Хранить термоматы рекомендовано в сухом месте. Теоретическая номограмма для определения ориентировочной продолжительности оттаивания и отогрева мерзлых грунтовых оснований нормальной влажности термоматами.

Экспериментальный график прогрева грунта термоматами

Эксперимент проводился в конце зимы (время наибольшего промерзания грунта).