Потери давления в трубках холодильного контура. Рекомендации по расчету и прокладке фреоновых трубопроводов Маслосъемные петли в системе кондиционирования врв

При монтаже холодильного контура фреоновых установок следует использовать только специальные медные трубы , предназначенные для холодильных установок (т.е. трубы «холодильного» качества). Такие трубы за рубежом маркируются буквами «R» или «L» .

Трубы прокладывают по трассе, указанной в проекте или монтажной схеме. Трубы должны быть в основном расположены горизонтально или вертикально. Исключение составляют:

  • горизонтальные участки всасывающего трубопровода, которые выполняют с уклоном не менее 12 мм на 1 м в сторону компрессора для облегчения возврата в него масла;
  • горизонтальные участки нагнетательного трубопровода, которые выполняют с уклоном не менее 12 мм на 1 м в сторону конденсатора.
В нижних частях восходящих вертикальных участков всасывающих и нагнетательных магистралей высотой более 3 метров необходимо монтировать . Схема монтажа маслоподъемной петли на входе в и на выходе из него приведена на рис. 3.13 и 3.14.

Если высота восходящего участка более 7,5 метров, то должна устанавливаться вторая маслолодъемная петля . В общем случае маслоподъемные петли следует монтировать через каждые 7,5 метров восходящего участка всасывающего (нагнетательного) (см. рис 3.15). Вместе с тем желательно, чтобы длины восходящих участков, особенно жидкостных, были как можно меньше во избежание значительных потерь давления в них.

Длина восходящих участков трубопроводов более 30 метров не рекомендуется .

При изготовлении маслоподъемной петли следует иметь в виду, что ее размеры должны быть как можно меньше. Лучше всего в качестве маслоподъемной петли использовать один U-образный или два уголковых фитинга (см. рис. 3.16). При изготовлении маслоподъемной петли путем изгиба трубы а также при необходимости уменьшения диаметра восходящего участка трубопровода следует соблюдать требование, чтобы длина L была не более 8 диаметров соединяемых трубопроводов (рис. 3.17).

Для установок с несколькими воздухоохладителями (испарителями) , расположенными на разных уровнях по отношению к компрессору рекомендуемые варианты монтажа трубопроводов с маслоподъемными петлями приведены на рис. 3.18. Вариант (а) на рис. 3.18 можно использовать только в случае наличия отделителя жидкости и размещения компрессора ниже , в остальных случаях необходимо использовать вариант (б).

В тех случаях, когда в процессе работы установки предусматривается возможность отключения одного или нескольких воздухоохладителей , расположенных ниже компрессора, и это может привести к падению расхода в общем восходящем трубопроводе всасывания более, чем на 40%, необходимо общий восходящий трубопровод выполнять в виде 2-х труб (см. рис. 3.19). При этом диаметр меньшей трубы (А) выбирают таким образом, чтобы при минимальном расходе скорость потока в нем была не менее 8 м/с и не более 15 м/с, а диаметр большей трубы (В) определяют из условия сохранения скорости потока в диапазоне от 8 м/с до 15 м/с в обеих трубах при максимальном расходе.

При разности уровней более 7,5 метров сдвоенные трубопроводы необходимо устанавливать на каждом участке высотой не более 7,5 м, строго соблюдая требования рис. 3.19. Для получения надежных паяных соединений рекомендуется использовать стандартные фитинги различной конфигурации (см. рис. 3.20).

При монтаже холодильного контура трубопроводы рекомендуется прокладывать с использованием специальных опор (подвесок) с хомутами. При совместной прокладке всасывающих и жидкостных магистралей вначале монтируют всасывающие трубопроводы и параллельно с ними жидкостные. Опоры и подвески необходимо устанавливать с шагом от 1,3 до 1,5 метров. Наличие опор (подвесок) должно также предотвращать отсыревание стен, вдоль которых прокладывают не теплоизолированные всасывающие магистрали . Различные конструктивные варианты опор (подвесок) и рекомендации по месту их крепления показаны на рис. 3.21, 3.22.

2017-08-15

Сегодня на рынке присутствуют VRF-системы оригинальных японских, корейских и китайских брендов. Ещё больше VRF-систем многочисленных OEM-производителей. Внешне все они очень похожи, и складывается ложное впечатление, что все VRF-системы одинаковы. Но «не все йогурты одинаково полезны», как говорилось в популярной рекламе. Мы продолжаем серию статей, направленных на изучение технологий получения холода, которые используются в современном классе кондиционеров - VRF-системах.

Конструкции сепараторов (маслоотделителей)

Масло в маслоотделителях отделяется от газообразного хладагента в результате резкого изменения направления и уменьшения скорости движения пара (до 0,7- 1,0 м/с). Направление движения газообразного хладагента изменяется с помощью перегородок или определённым образом установленных патрубков. В этом случае маслоотделитель улавливает только 40-60 % масла, унесённого из компрессора. Поэтому лучшие результаты даёт центробежный или циклонный маслоотделитель (рис. 2). Газообразный хладагент, поступающий к патрубку 1, попадая на направляющие лопатки 3, приобретает вращательное движение. Под действием центробежной силы капли масла отбрасываются на корпус и образуют медленно стекающую вниз плёнку. Газообразный хладагент при выходе из спирали резко меняет своё направление и по патрубку 2 уходит из сепаратора масла. Отделившееся масло отгораживается от струи газа перегородкой 4, чтобы предотвратить вторичный захват масла хладагентом.

Несмотря на работу сепаратора, небольшая часть масла всё-таки уносится с фреоном в систему и постепенно там накапливается. Для его возврата применяется специальный режим возврата масла. Суть его в следующем. Наружный блок включается в режиме охлаждения на максимальную производительность. Все клапана EEV во внутренних блоках полностью открыты. Но вентиляторы внутренних блоков выключены, поэтому фреон в жидкой фазе проходит через теплообменник внутреннего блока не выкипая. Жидкое масло, находящееся во внутреннем блоке, смывается жидким фреоном в газовый трубопровод. И далее возвращается в наружный блок с газообразным фреоном на максимальной скорости.

Тип холодильного масла

Тип холодильного масла, используемого в холодильных системах для смазки компрессоров, зависит от типа компрессора, его производительности, но главное — от используемого фреона. Масла для холодильного цикла классифицируются как минеральные и синтетические.

Минеральное масло главным образом используется с хладагентами CFC (R12) и HCFC (R22) и основано на нафтене или парафине, либо смеси парафина и акрилбензола. Хладагенты HFC (R410a, R407c) не растворяются в минеральном масле, поэтому для них используется синтетическое масло.

Подогреватель картера

Холодильное масло смешивается с хладагентом и циркулирует с ним на протяжении всего цикла охлаждения. Масло в картере компрессора содержит некоторое количество растворённого хладагента, а жидкий хладагент в конденсаторе содержит небольшое количество растворённого масла. Недостаток использования последнего — это образование пены. Если холодильная машина отключается на длительный период и температура масла в компрессоре ниже, чем во внутреннем контуре, хладагент конденсируется и бóльшая его часть растворяется в масле. Если в этом состоянии происходит пуск компрессора, давление в картере падает и растворённый хладагент испаряется вместе с маслом, образуя масляную пену. Этот процесс называют «пенообразование», он приводит к выходу масла из компрессора по нагнетательному патрубку и ухудшению смазки компрессора. Для предотвращения пенообразования на картере компрессора VRF-систем установлен подогреватель, чтобы температура картера компрессора всегда была немного выше температуры окружающей среды (рис. 3).

Влияние примесей на работу холодильного контура

1. Технологическое масло (машинное, масло для сборки). Если в систему, использующую хладагент HFC, попадёт технологическое масло (например, машинное), то такое масло будет отделяться, образуя хлопья и вызывая засор капиллярных трубок.
2. Вода. Если в систему охлаждения, использующую хладагент HFC, попадает вода, то повышается кислотность масла, происходит разрушение полимерных материалов, используемых в двигателе компрессора. Это приводит к разрушению и пробоям изоляции электродвигателя, засорению капиллярных трубок и т.д.
3. Механический мусор и грязь. Возникающие проблемы: засорение фильтров, капиллярных трубок. Разложение и отделение масла. Разрушение изоляции электродвигателя компрессора.
4. Воздух. Следствие попадания большого количества воздуха (например, систему заправили без вакуумирования): аномальное давление, повышенная кислотность масла, пробой изоляции компрессора.
5. Примеси других хладагентов. Если в систему охлаждения попадает большое количество хладагентов различного типа, возникает аномальное рабочее давление и температура. Следствием этого является повреждение системы.
6. Примеси других холодильных масел. Многие холодильные масла не смешиваются друг с другом и выпадают в осадок в виде хлопьев. Хлопья забивают фильтры и капиллярные трубки, снижая расход фреона в системе, что ведёт к перегреву компрессора.

Неоднократно встречается следующая ситуация, связанная с режимом возврата масла в компрессоры наружных блоков. Смонтирована VRF-система кондиционирования воздуха (рис. 4). Дозаправка системы, параметры работы, конфигурация трубопроводов — всё в норме. Единственный нюанс — часть внутренних блоков не смонтирована, но коэффициент загрузки наружного блока допустимый — 80 %. Тем не менее, регулярно выходят из строя компрессоры по причине заклинивания. В чём причина?

А причина проста: дело в том, что для монтажа недостающих внутренних блоков были подготовлены ответвления. Эти ответвления были тупиковыми «аппендиксами», в которые циркулирующее вместе с фреоном масло попадало, но обратно выйти уже не могло и там накапливалось. Поэтому компрессоры выходили из строя из-за обычного «масляного голодания». Чтобы этого не произошло, на ответвлениях максимально близко к разветвителям необходимо было поставить запорные вентили. Тогда масло свободно циркулировало бы в системе и возвращалось в режиме сбора масла.

Маслоподъёмные петли

Для VRF-систем японских производителей нет требований установки маслоподъёмных петель. Считается, что сепараторы и режим возврата масла эффективно возвращают масло в компрессор. Однако нет правил без исключений — на системах MDV серии V5 рекомендуется установка маслоподъёмных петель, если наружный блок выше внутренних и перепад высот более 20 м (рис. 5).

Физический смысл маслоподъёмной петли сводится к накоплению масла перед вертикальным подъёмом. Масло скапливается в нижней части трубы и постепенно перекрывает отверстие для пропуска фреона. Газообразный фреон увеличивает свою скорость в свободном сечении трубопровода, захватывая при этом скопившееся жидкое масло.

При полном перекрытии сечения трубы маслом фреон выталкивает это масло как пробку до следующей маслоподъёмной петли.

Вывод

Сепараторы масла являются важнейшим и обязательным элементом качественной VRF-системы кондиционирования. Только благодаря возврату фреонового масла обратно в компрессор достигается надёжная и безаварийная работа VRF-системы. Наиболее оптимальный вариант конструкции — когда каждый компрессор снабжён отдельным сепаратором, так как только в этом случае достигается равномерное распределение фреонового масла в многокомпрессорных системах.

Интернет магазин «Поток холода» предлагает купить маслоподъемные петли с гарантией качества от авторитетного производителя и оперативной курьерской доставкой

Маслоподъемные петли практически всегда необходимы при установке и монтаже:

  • бытовых и полупромышленных кондиционеров;
  • оконных, настенных, напольно-потолочных, канальных, кассетных cплит-систем.

Оригинальные маслоподъемные петли мы продаем напрямую от производителя без посреднической наценки.

В нашем интернет магазине есть возможность купить все сразу: не только различные маслоподъемные петли, но и другие комплектующие. У нас большой выбор петель различной маркировки.

Если участок холодильной установки - нестандартный, представитель компании порекомендует установить дополнительную петлю либо, наоборот, сократить число маслоподъемных петель для эффективного гидравлического сопротивления. В нашей компании работают профессионалы.

Маслоподъемная петля - цена и качество от «Поток холода»

Назначение маслоподъемной петли - обеспечение дополнительного гидравлического сопротивления на основании расчета длины участка холодильного контура фреонной установки.

Маслоподъемные петли нужны, когда речь идет о монтаже холодильных установок с вертикальными участками длиной от 3 метров. Если монтируется вертикальное оборудование - понадобится использование петли каждые 3,5 метра, а в верхней точке - обратной петли.

В нашем интрент магазине вас ждет разумная цена на маслоподъемные петли и другие комплектующие, а также расходники (хладоны и др). Звоните по телефону указанному на сайте и наши менеджеры помогут сделать вам правильный выбор.