Монтаж системы одк. Основные требования к элементам системы содк. Система ОДК: из чего она состоит

Причины превышения влажности, могут быть следующими:

  • Влагу пропускает наружный защитный слой;
  • Просачивание теплоносителя в местах разрушения стальной части трубопровода вследствие коррозионных процессов либо дефектов сварных соединений.

Использование системы оперативного дистанционного контроля (СОДК)

В соответствии с пунктом 4.24 ГОСТ 30732-2006 изолированные трубы и изделия должны быть оснащены проводниками СОДК. Следовательно, установка СОДК обязательна на трубопроводах, как с внешней стальной оцинкованной оболочкой, так и с защитным слоем из полиэтилена.

Обычно, по согласованию с заказчиком, в случае надземной прокладки трассы, система ОДК может не монтироваться, так как участки с повышенной влажностью можно обнаружить визуально, без помощи детекторов. Также, по согласованию с заказчиком, система ОДК не устанавливается при подземной прокладке теплотрассы, если по тем или иным причинам наличие системы ОДК не отражается в проекте.

Состав СОДК

Обычно система ОДК состоит из следующих элементов:

  • Медные проводники;
  • Концевые и промежуточные элементы трубопровода с кабелем вывода;
  • Соединительный кабель;
  • Коммутационный терминал для подсоединения устройств выявления повреждений;
  • Детектор повреждений;
  • Импульсный рефлектометр.

Медные проводники СОДК

В соответствии с пунктом 5.1.9 ГОСТ 30732-2006 под покровным слоем тепловой изоляции труб диаметром до 426 мм располагаются два проводника системы ОДК. Проводники состоят из низколегированной мягкой меди марки ММ сечением 1,5 мм2. Проводники располагаются параллельно оси трубы в плоскости одного сечения на расстоянии (20 ± 2) мм от стальной трубы.

Прикрепленные к стальной трубе центрирующие опоры используются в качестве мест фиксации проводников. Расстояние между центрирующими опорами должно быть от 0,8 до 1,2 м. Если продольный шов стальной трубы находится в верхней точке, расположение кабелей должно соответствовать положениям часовой стрелки «3» и «9 часов». При использовании трубы диаметром ≥ 530 мм применяются 3 проводника, фиксируемые в положениях «3», «9», «12 часов».

Главный сигнальный проводник размещается с правой стороны, по направлению подачи теплоносителя к потребителю, согласно п. 4.59 СП 41-105-2002. Второй сигнальный провод является транзитным. Отличие сигнального проводника от транзитного заключается в том, что сигнальный проводник заходит во все ответвления теплотрассы, повторяя весь ее контур, а транзитный - по кратчайшему пути между начальной и конечной точкой.

Детектор повреждений

Детектор повреждений предназначен для контроля состояния трубопровода на всем измеряемом участке. Устройство сможет обнаруживать следующие неисправности и недостатки:

  • Разрыв сигнальных проводников;
  • Замыкание сигнального проводника на стальную трубу;
  • Намокание изоляционного слоя.

Детектор не определяет точное место дефекта, а также причину.

Принцип работы детектора следующий. Пенополиуретан характеризуется высоким электрическим сопротивлением. Сопротивление изоляционного слоя ППУ при попадании влаги значительно уменьшается. Электрическое сопротивление измеряется между проводниками системы ОДК и стальной трубой. В случае, если значение сопротивления будет ниже порогового, то детектор выдает сигнал «намокание». Также данный сигнал может сработать, когда сигнальный провод касается металлической трубы.

Детектор также измеряет сопротивление медных проводников. В случае, если сопротивление электрической цепи превышает предельный параметр, детектор выдает сигнал «обрыв». Детекторы повреждений бывают стационарные и переносные.

Импульсный рефлектометр (Локатор)

Импульсный рефлектометр (локатор) является переносным прибором и предназначен для поиска местоположений дефектов. Прибор выявляет те же типы неполадок, что и детектор повреждений. Принцип работы рефлектометра основан на локационном измерении. Вследствие монтажа проводников индикаторов относительно стальной трубы правильным образом, при подаче на них высокочастотных электрических импульсов, и вследствие электрических свойств пенополиуретана образуется волновое сопротивление, которое является постоянным на всей протяженности трубы. Локация электрическими импульсами небольшой энергии происходит беспрепятственно.

Намокание изоляционного слоя приводит к изменению величины волнового сопротивления, а, следственно, затрудняет прохождение импульсов. Локатор фиксирует отраженные от влажной изоляции импульсы. Импульсный рефлектометр позволяет определить длину дистанции до места дефекта.

На изменение волнового сопротивления, помимо намокания, могут влиять:

  • Изменение сечения изоляционного слоя;
  • Места присоединения муфт;
  • Места обрыва проводников;
  • Конечная точка сигнальной линии.

Контрольно-монтажный тестер

Тестер предназначен для измерения ППУ изоляции и сопротивления петли сигнальных проводов. С помощью тестера, возможно идентифицировать те же дефекты, что и с помощью детектора.

Тестер обычно используют для проверки изделий с системой ОДК непосредственно при их производстве, монтаже, эксплуатации инженерных сетей.

Коммутационный терминал

В соответствии с пунктом 4.69 СП 41-105-2002 для соединения сигнальных проводников и подключения приборов контроля необходимо использовать терминалы следующих типов:

  • В конечной контрольной точке трубопровода - концевой терминал;
  • В конечной контрольной точке трубопровода, имеющей выход на стационарный детектор - Концевой терминал с выходом на стационарный детектор;
  • В промежуточной контрольной точке трубопровода - промежуточный терминал;
  • В точке контроля на границе участка - двойной концевой терминал;
  • В месте слияния нескольких отрезков трубопровода - объединяющий терминал;
  • В точках, где нет изоляционного слоя, для подсоединения стыковочного провода - проходной терминал. Ограничение по максимальной длине провода составляет 10 м.

Концевые терминалы монтируются в конечных контрольных точках тепловой сети, промежуточные (один из них может соединяться со стационарным детектором) - на прямолинейных отрезках. Точки контроля необходимо предусматривать на расстоянии не более 300 м друг от друга. Если трубопровод имеет протяженность до 100 м, его оснащают 1 концевым терминалом. В таком случае возможна закольцовка кабелей СОДК в противоположной точке трубопровода. Начальные точки боковых ответвлений протяженностью порядка 30-40 м необходимо оборудовать промежуточными терминалами без учета местоположения других контрольных точек основного трубопровода.

Монтаж СОДК в местах стыка

Перечень материалов для монтирования системы оперативного дистанционного контроля:

  • Лента для крепления (крепеж на стальную трубу держателей ОДК);
  • Гильзы медные луженые - обжимные гильзы с поверхностным гальваническим лужением для соединения проводников системы ОДК. Соединение возможно проводить «встык» и «внахлест»;
  • Держатели ОДК.

Технические параметры

В соответствии с пунктом 5.1.10 ГОСТ 30732-2006 сопротивление между стальной трубой и проводниками системы ОДК должно быть не менее 100 МОм при испытательном напряжении не менее 500 В.

В соответствии с пунктом 3.9 СП 41-105-2002 сопротивление медных проводников-индикаторов должно быть в пределах 0,012-0,015 Ом/м. Сопротивление изоляции 3,3 кОм/м.

В соответствии с пунктом 4.57 СП 41-105-2002 пороговое сопротивление медных проводников-индикаторов должно быть 200 Ом при максимальной длине 5000 м. При превышении данного параметра детектор выдает сигнал «Обрыв». Пороговое сопротивление изоляции должно соответствовать 1-5 кОм. Если параметр сопротивления изоляции будет ниже, то детектор выдает сигнал «намокание».

Описание:

А. В. Аушев , сгенеральный директор ООО «Термолайн»

С. Н. Синавчиан , канд. техн. наук, доцент кафедры РЛ-6 МГТУ им. Н. Э. Баумана

Сети центрального отопления и горячего водоснабжения представляют собой теплоизолированную металлическую трубу, создающую герметичный контур для перемещения жидкостей под давлением до 1,6 МПа. В условиях города задача контроля его герметичности определяется как необходимостью сохранения его функциональности, а значит снижения потерь теплоносителя и экономии тепловой энергии, так и требованиями безопасности горожан.

Одним из методов контроля герметичности металлического трубопровода является контроль давления в нем. Однако ряд причин, таких как наличие расхода теплоносителя потребителем, зависимость давления от температуры в замкнутом объеме и низкая точность манометров, делают этот метод весьма грубым.

Определение утечек при канальной и бесканальной прокладке теплопроводов

Теплопроводы можно разделить на две группы:

  • обладающие дополнительной герметичной оболочкой теплоизоляции по всей длине (бесканальная прокладка),
  • с негерметичной оболочкой изоляции, выполняющей в основном функции ее фиксации (канальная прокладка).

Рассмотрим эти группы с точки зрения обеспечения возможности обнаружения и локализации местоположения утечки теплоносителя.

Канальную прокладку применяют, как правило, для трубопроводов, изоляционный слой которых не защищен дополнительной гидроизоляционной оболочкой по всей длине. Для трубопроводов канальной прокладки поиск утечки возможен только при использовании специальной аппаратуры. Такой аппаратурой являются акустические и корреляционные течеискатели, принцип действия которых основан на определении местоположения мощного источника звуковых и вибрационных колебаний при истечении жидкости за пределы герметичного контура.

Также применяют тепловизоры, данные которых позволяют определять местоположение максимального уровня инфракрасного излучения грунта, нагреваемого бесконтрольно истекающим из трубопровода теплоносителем. Иногда применяют химический анализ грунтовых и сточных вод, определение наличия теплоносителя в которых свидетельствует о порыве трубопровода.

Однако в условиях города присутствие смежных коммуникаций (куда уходит теплоноситель), а также неравномерность глубины и поверхности грунта над трубопроводом вносят существенные трудности в определение местоположения утечки при применении тепловизоров и химического анализа вод. Поиск местоположения порыва трубопровода при канальной прокладке, как правило, заключается в комплексном подходе при выполнении данных работ. Кроме того, ни один из перечисленных методов невозможно реализовать дешевым постоянно установленным оборудованием, поэтому экономически доступная возможность автоматического оповещения об аварийной ситуации на трубопроводе отсутствует.

Для бесканальной прокладки применимы только трубопроводы, теплоизоляционный слой которых защищен дополнительной внешней гидроизоляционной оболочкой. Однако эта оболочка не только служит барьером для внешних грунтовых или талых вод, но и является препятствием для проникновения теплоносителя в обсыпку при потере герметичности металлической трубы. При этом истечение теплоносителя в обсыпку не сопровождается мощным выделением акустического шума и вибрации, как это происходит при канальной прокладке, что является причиной малой эффективности использования акустических и корреляционных методов.

Единственным способом (из приведенных выше для трубопроводов канальной прокладки) определения наличия и местоположения разгерметизации металлического трубопровода или внешней оболочки является использование тепловизоров. Однако в условиях города этот способ нельзя считать точным, а автоматизация оповещения об аварийной ситуации недоступна.

Системы оперативного дистанционного контроля трубопроводов

Использование системы оперативного дистанционного контроля (СОДК) трубопроводов в пенополиуретановой (ППУ) изоляции является единственно возможным гарантированным способом контроля состояния изоляции трубопровода канальной прокладки . СОДК представляет собой комплекс из приборной части и трубной, состоящей из двух медных проводников, расположенных в толще изоляции параллельно металлическому трубопроводу по всей его длине (рис.). При намокании изоляции вследствие разгерметизации металлической трубы и внешней полиэтиленовой оболочки ее сопротивление резко снижается, что детектируется стационарными приборами контроля состояния изоляции.

Согласно данные детекторов СОДК необходимо фиксировать не реже одного раза в две недели. Сбор информации традиционно осуществляется сотрудниками службы эксплуатации – «обходчиками», задачей которых является не только обход множества точек, но и фиксация на бумажном носителе данных стационарных и переносных детекторов состояния изоляции. Увеличивающиеся с каждым годом объемы внедрения трубопроводов в ППУ-изоляции, оснащенных СОДК , не позволяют их эффективно контролировать методом обхода, что является причиной необходимости применения систем диспетчеризации (см. справку).

Преимущества диспетчеризации

Еще раз отметим, что автоматический контроль герметичности металлической трубы и внешней оболочки реализуем только для трубопроводов в ППУ-изоляции канальной прокладки, оборудованных СОДК. Постоянный дистанционный мониторинг состояния таких трубопроводов имеет следующие преимущества перед традиционным способом сбора информации:

  • Мгновенное оповещение об изменении состояния трубопровода и целостности СОДК.
  • Согласно п. 9.2 : «Для оперативного выявления повреждений трубопровода необходимо обеспечить регулярный контроль состояния СОДК (не реже двух раз в месяц) с помощью детектора». За это время при прорыве металлической трубы возможен выход из строя всего участка трубопровода с ППУ-изоляцией. Возможно распространение воды внутри теплоизоляции трубопровода (между ППУ-изоляцией и оболочкой, а также ППУ-изоляцией и металлической трубой) на десятки метров в течение короткого времени. Эффективная эксплуатация таких участков в дальнейшем невозможна, процесс их намокания является необратимым, что приводит к необходимости перекладки десятков метров трубопровода.

    Особо отметим, что потеря целостности металлической трубы в ППУ-изоляции не сопровождается резким падением давления в системе, как это происходит в трубопроводах канальной прокладки. Это связано, во-первых, с герметичностью полиэтиленовой оболочки, а во-вторых, с бесканальным методом прокладки трубопровода в ППУ-изоляции. Давление в трубе может сохраняться даже при распространении сетевой воды вдоль трубопровода на десятки метров. Данный факт свидетельствует о невозможности обнаружения аварийной ситуации на трубопроводе в ППУ-изоляции, кроме как с помощью исправной СОДК. В течение двух недель отсутствия съема показаний с детекторов возможен подмыв грунта, что приведет к обвалу несущих слоев почвы, а это, в свою очередь, в условиях города может привести не только к большому материальному ущербу, но и к человеческим жертвам.

  • Отсев ложных вызовов.
  • Специфика работы «обходчиков» определяет возможность фиксации ими ложной информации или отсутствие передачи реальных сведений о показаниях детекторов аварийным службам. Зачастую при прибытии бригад реагирования показания детекторов соответствуют нормальной работе трубопровода, а ложный вызов связан с некомпетентностью «обходчика». Но хуже, если он не зафиксировал или не передал сведения об аварии на трассе. Сотрудники службы эксплуатации или сторонняя организация (работающая по договору), ответственные за съем показаний по месту способом обхода, могут реально не посещать контролируемые объекты, а сами при этом фиксируют «нормальное» состояние трубопровода, так как знают, что на данном этапе их никто не контролирует. Тогда время подмыва грунта превышает две недели, что значительно усугубляет последствия аварии на трубопроводе и увеличивает длину требуемой замены. Исключая человеческий фактор из цепочки оповещения об аварийной ситуации, мы значительно повышаем надежность трубопроводов в ППУ-изоляции.

  • Исключение коррупционной составляющей.
  • Возможна ситуация, когда сотрудник службы эксплуатации, ответственный за съем показаний по месту, по каким-либо причинам умышленно пытается скрыть или исказить реальное состояние трубопровода – например, этим же сотрудником был принят в эксплуатацию трубопровод в ненадлежащем качестве или с неисправной СОДК. При организации удаленного контроля можно исключить коррупционную составляющую, имеющую место при приемке трубопроводов в эксплуатацию. Подобный подход также позволит обеспечить более высокое качество сдаваемых трубопроводов, так как принимает его в эксплуатацию один сотрудник, а контролирует через ПД другой.

  • Применение многоуровневых детекторов.
  • Как правило, на теплотрассах установлены одноуровневые стационарные детекторы повреждений. Они сигнализируют о намокании трубопровода, при котором сопротивление его изоляции снижается только до 5 кОм. Использование многоуровневых детекторов с токовым выходом обеспечивает возможность обнаружения дефекта трубопровода на ранней стадии его формирования. Детектирование сопротивления изоляции контролируемого трубопровода происходит в шести диапазонах, верхний из которых соответствует идеальному состоянию изоляции (более 1 МОм). Скорость снижения сопротивления от верхнего диапазона до нижнего (менее 5 кОм) свидетельствует о размерах дефекта: чем выше скорость – тем значительнее дефект трубопровода.

  • Удобство восприятия получаемой информации, ее обработка и хранение.
  • Сегодня вся информация, полученная от «обходчиков», хранится в основном на бумажных носителях и практически не поддается статистической обработке. Собираемые с помощью системы диспетчеризации данные не только являются более объемными, полными и достоверными, но и дают возможность проводить обработку с помощью различных алгоритмов математического анализа. Это позволяет отсеивать сезонные изменения состояния изоляции трубопровода, ложные срабатывания, ошибки, обусловленные человеческим фактором. Использование специального программного обеспечения позволяет автоматически формировать отчеты о состоянии трубопроводов, отслеживать характер и скорость реагирования персонала на местах, а при накоплении достаточной выборки проводить статистический анализ сведений об использовании трубопроводов с ППУ-изоляцией.

  • Гибкость системы диспетчеризации.
  • Стабильность и качество функционирования любой системы телеметрии зависят от правильной организации архитектуры взаимодействия ее компонентов. Обычная структура системы диспетчеризации предусматривает сбор данных от территориально распределенных контролируемых объектов (часто однотипных) в единый центр. Бывают и другие варианты: многоуровневое построение диспетчерских, локальные узлы сбора или ретрансляции данных и прочие, но сути централизованного построения системы они не меняют. При этом размер системы в зависимости от объекта может быть как небольшим (в случае квартала, предприятия), так и гигантским (филиал, город, область).

  • Экономическая целесообразность.
  • Роль автоматизации и модернизации технологического оборудования коммунальных сетей в современной действительности заключается не только в повышении качества обслуживания населения, но и в снижении стоимости предоставления услуги транспорта тепла и горячей воды. Важными экономическими факторами снижения эксплуатационных затрат являются отсутствие фонда заработной платы «обходчиков», их материального обеспечения, отсутствие необходимости обучения, контроля и бухгалтерского учета. Отсутствуют также дополнительные затруднения, связанные с организацией доступа «обходчиков» в помещения, где установлены детекторы. Особое значение имеет скорость доставки информации об аварийной ситуации, что является основным положительным экономическим показателем.

Перечисленные преимущества систем диспетчеризации показаний детекторов состояния трубопроводов в ППУ-изоляции стали причиной их применения еще в начале 2000-х годов. Первые упоминания о положительных эффектах опубликованы в . На данный момент в одной из теплосетей Московской области единовременно функционируют несколько систем передачи данных, осуществляющих обмен информацией как по кабельным линиям, так и по GSM-каналу.

Способы реализации систем передачи данных

Первый способ – это интеграция стационарных детекторов повреждений как первичных источников информации в архитектуру действующих систем телеметрии, выполняющих задачи мониторинга и управления технологическим оборудованием тепловых пунктов. Реализация данного способа возможна при наличии у детектора СОДК аппаратной возможности передачи данных на входные линии удаленного контроллера (детектор должен быть оснащен специальными выходами для передачи данных типа «токовый выход» или «сухой контакт»). Сотрудники тепловых сетей при этом должны обладать высокими профессиональными навыками для успешной визуализации, анализа и хранения данных детекторов на диспетчерском пульте.

Применяются как кабельные, так и GSM-каналы передачи данных. Этот способ передачи данных реализован для мониторинга и управления рядом тепловых пунктов в Москве, Мытищах, Реутове, Санкт-Петербурге, Астане.

Второй способ ориентирован на использование систем GSM-телеметрии, которые нашли применение в электро­энергетике, газовом хозяйстве, банковской сфере, комплексах охранно-пожарной сигнализации. Высокая конкуренция между производителями таких комплексов является причиной возникновении большого количества надежных и дешевых GSM-контроллеров, применение которых в целях мониторинга параметров состояния трубопроводов в ППУ-изоляции является экономически эффективным и простым в реализации решением . Основными требованиями к системам GSM-телеметрии являются возможность передачи данных от детектора к контроллеру и наличие программного обеспечения диспетчерского пульта. Это программное обеспечение должно обеспечивать:

  • непрерывный неограниченный контроль за удаленными объектами;
  • визуализацию местоположения контролируемых объектов на карте населенного пункта;
  • визуальное и акустическое уведомление в случае аварии;
  • индивидуальное конфигурирование уровня сигнала «Авария» для каждого из объектов;
  • стабильность передачи данных при дублировании различным транспортом (модемное соединение, СМС, голосовое соединение);
  • возможность передачи и визуализации данных от охранных датчиков, датчиков температуры, давления и т. д.;
  • возможность автоматического опроса объектов;
  • отсылка СМС на телефоны ответственных лиц при возникновении аварийных ситуаций;
  • персонализированное управление и хранение информации о действиях оператора в журнале событий;
  • дружественный интерфейс, бесперебойность работы, простоту эксплуатации и т. д.

Коммутация GSM-контроллеров с детекторами, монтаж и конфигурирование удаленных контроллеров осуществляются самостоятельно сотрудниками отделов КИПиА или специальных подразделений, что значительно упрощается ввиду наличия подробных инструкций. Задача формирования локального диспетчерского пульта (ЛДП) на уровне предприятия тепловых сетей является легковыполнимой, так как заключается в установке и настройке бесплатного и интуитивно понятного программного обеспечения. Данный способ реализован предприятиями Новосибирска, Мытищ, Железнодорожного, Дмитрова.

Третий способ диспетчеризации показаний детекторов СОДК предложен в . В случае если эксплуатирующая организация не видит необходимости в создании собственного ЛДП (отсутствие должного финансирования, персонала или сторонней организации соответствующего уровня подготовки, малое количество объектов), возможно использование сервисов объединенного диспетчерского пульта (ОДП). На ОДП, расположенный в Щелково Московской области, стекается информация от сконфигурированных для работы с ОДП GSM-контролеров, установленных на территории РФ, РК и РБ.

Экстренное оповещение ответственного лица эксплуатирующей организации при возникновении аварийной ситуации происходит любым удобным для него способом (личный кабинет на сайте ОДП, электронная почта, сотовый телефон, диспетчерская служба и т. д.). Также предусмотрен плановый опрос по графику, утвержденному эксплуатирующей организацией.

Эксплуатирующая организация должна обеспечить в месте установки детектора и удаленного GSM-контроллера сохранность установленного оборудования, его бесперебойное питание и удовлетворительный уровень GSM-сигнала (при необходимости применение репитера).

Впоследствии возможен дистанционный перевод данных на вновь созданный эксплуатирующей организацией ЛДП. Таким образом, использование услуг ОДП становится тестовым вариантом организации собственного ЛДП.

Способ диспетчеризации показаний детекторов определяется на уровне проектных работ, так как спецификация, а значит и дальнейшее финансирование, формируется специалистом проектной организации, поэтому одной из важных задач эксплуатирующей организации является оформление полного технического задания с указанием требований по диспетчеризации проектируемого трубопровода.

На основании предоставленного технического задания проектировщик должен определить местоположение и комплектацию точки контроля СОДК трубопровода, оснащенной детектором повреждений. Обязательным условием постоянного функционирования такой точки контроля является наличие в ней питания 220 В, 50 Гц. Также поставляются комплектации точек контроля СОДК для работы в автономном режиме , однако их применение возможно только в исключительных случаях, так как вне зависимости от типа источника питания (солнечная панель или батареи) комплекты для автономной работы обеспечивают только периодический контроль состояния изоляции трубопровода, что является основным способом снижения энергопотребления.

Опыт внедрения и поставки оборудования для диспетчеризации показаний детекторов состояния трубопроводов в ППУ-изоляции свидетельствует о своевременности, достаточно высоком уровне оснащенности и экономической эффективности данного направления. Профессиональный подход позволяет полностью автоматизировать процесс оповещения об аварийных ситуациях на трубопроводах тепловых сетей, что возможно только для трубопроводов, оснащенных СОДК. При этом предложены различные способы реализации мониторинга показаний детекторов для различного уровня профессиональной подготовки персонала тепловых сетей.

Литература

  1. СТО 18929664.41.105–2013. Система оперативно-дистанционного контроля трубопроводов с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке или стальном защитном покрытии. Проектирование, монтаж, приемка, эксплуатация.
  2. Кашинский В. И., Липовских В. М., Ротмистров Я. Г. Опыт эксплуатации трубопроводов в пенополиуретановой изоляции в ОАО «Московская теплосетевая компания» // Теплоэнергетика. 2007. № 7. С. 28–30.
  3. Казанов Ю. Н. Организационная и техническая модернизация системы теплоснабжения Мытищинского района // Новости теплоснабжения. 2009. № 12. С. 13–26.
  4. ООО «Термолайн». Альбом технических решений по проектированию систем оперативно-дистанционного контроля трубопроводов в пенополиуретановой изоляции. М., 2014.

Система ОДК позволяет контролировать состояние трубопровода, оперативно сигнализировать о появившейся неисправности и точно указать место любого дефекта. Наличие системы ОДК значительно экономит денежные средства и сокращает время, затрачиваемое на обслуживание трубопровода.

Система контроля позволяет обнаружить следующие дефекты:

  • Повреждение металлической трубы (свищ).
  • Повреждение полиэтиленовой оболочки.
  • Обрыв сигнальных проводников.
  • Замыкание сигнальных проводников на металлическую трубу.
  • Плохое соединение сигнальных проводов на стыках.


Состав системы ОДК

Система оперативно-дистанционного контроля представляет собой специальный комплекс приборов и вспомогательного оборудования (которое в дальнейшем будет именоваться элементами системы ОДК) с помощью которого осуществляется контроль состояния трубо-провода. Исключение какого-либо элемента из состава системы нарушает ее целостность и нормативную функциональность.

В состав системы контроля входят следующие компоненты:

  • Сигнальные проводники
  • Контрольно-измерительное оборудование (Детекторы повреждений, импульсный рефлектометр – локатор, контрольно-монтажный прибор «Robin КМР 3050 DL»).
  • Коммутационные терминалы.
  • Соединительные кабели.
  • Наземные и настенные ковера.
  • Материалы и оборудование для монтажа.

Сигнальные проводники

Назначение

Все трубопроводы и фасонные изделия (тройники, отводы, задвижки, неподвижные опоры, компенсаторы) должны быть оснащены сигнальными проводниками. С помощью сигнальных проводов (по ним передается сигнал – ток или высокочастотный импульс) определяется со- стояние трубопровода.


Технические параметры

Конфигурация проводников

Сигнальные провода, устанавливаемые внутри теплоизоляционного слоя пенополиуретана, протягивают параллельно изготавливаемой трубе и геометрически располагают их на “3” и “9” или “2” и “10” часов.

Функциональное назначение проводников

Монтируемые провода абсолютно одинаковые, однако по назначению подразделяются на основной и транзитный провода.
Основной провод – это сигнальный проводник, заходящий при монтаже теплотрассы во все ее ответвления. Этот провод является главным для определения состояния трубопровода, так как повторяет его контур.
Транзитный провод – это сигнальный проводник, который не заходит ни в одно ответвление теплотрассы, а проходит по кратчайшему пути между начальной и конечной точкой трубопровода и в основном служит для образования сигнальной петли.


Монтаж проводников при строительстве

При строительстве теплотрассы монтаж проводников производится на стыковых соединениях трубопровода.
Монтаж проводов надо осуществлять таким образом, чтобы основной сигнальный провод находился справа по направлению подачи воды к потребителю на всех трубопроводах, а все боковые ответвления должны включаться в разрыв основного сигнального проводника. Боковые ответвления к транзитному проводу подключать запрещается.

Соединение проводов на стыках

Сигнальные провода соединяются между собой соответственно: основной с основным, а транзитный с транзитным.
С помощью пассатижей аккуратно выпрямляются и растягиваются скрученные в спираль провода и, не допуская изломов, располагаются параллельно внутри .
Провода зачищаются с помощью наждачной бумаги от остатков пены и краски, а затем тщательно обезжириваются.
Провода следует натянуть и отрезать лишние части таким образом, чтобы не было слабины при соединении.
Вставить концы проводов в обжимную гильзу и опрессовать гильзу с обеих сторон с помощью обжимных клещей.
После этого полученное соединение необходимо облудить с помощью неактивного флюса, припоя ПОС-61 и газового паяльника (или электрического, если есть электропитание 220В) соединение проводов нагревают паяльником, через несколько секунд оно нагревается до температуры плавления припоя.
Соединение запаяно правильно, в том случае, когда припой заполняет обжимную втулку с обеих сторон.
Для проверки правильности соединения необходимо потянуть за сигнальные провода, чтобы проверить, в порядке ли сращивание.
Вжать провода в специальные прорези в держатели проводов, предварительно прикрепленные к металлической трубе.

Система ОДК предназначена для непрерывного или периодического контроля состояния теплоизоляционного слоя и обнаружения мест увлажнения изоляции. Появление влаги может быть связано с повреждением внешней полиэтиленовой оболочки или с утечкой теплоносителя из стальной трубы вследствие коррозии или дефектов сварных соединений.

СОДК позволяет контролировать качество монтажа и сварки стального трубопровода, заводской изоляции, работ по изоляции стыковых соединений, предотвращать аварии в процессе эксплуатации теплопровода и, в конечном счете, обеспечивает длительную, надежную и безопасную работу тепловых сетей.

СОДК является обязательным элементом (включена в ГОСТ 30732-2006) трубопроводов в ППУ-изоляции.

СОДК по стоимости составляет всего 0,5-2% от общей стоимости объекта в зависимости от объема заказа. Одним прибором (переносным детектором) можно контролировать несколько объектов.

Система включает в себя:

  • сигнальные проводники в теплоизоляционном слое трубопроводов, проходящие по всей длине теплосети;
  • терминалы для подключения приборов в точках контроля (ЦТП, котельная, ковер) и коммутации сигнальных проводников;
  • кабели для соединения сигнальных проводников с терминалами в точках контроля, а также для соединения сигнальных проводников на участках трубопроводов, где устанавливаются неизолированные элементы;
  • детекторы переносные (9 В) для периодического и детекторы стационарные (220 В)для непрерывного контроля;
  • локаторы (импульсные рефлектометры) - приборы для определения точного места повреждения или утечки;
  • тестеры изоляции.

В системе ОДК «МосФлоулайн» заложен принцип действия НОРДИКС (применяется в 95% всех действующих европейских систем). Система базируется на измерении электрической проводимости теплоизоляционного слоя, которая меняется при изменении влажности. Для поиска мест неисправности (увлажнение ППУ изоляции, обрывы сигнальных проводников) применяются методы и приборы, основанные на импульсной рефлектометрии.

Достоинствами данного метода является его применимость для широкого диапазона увлажнения изоляции и возможность поиска обрывов сигнальных проводников в нескольких местах.

Нашей компанией разработаны и поставляются собственные приборы системы ОДК: переносные и стационарные детекторы, терминалы со штекерными разъемами, а также детекторы нового поколения, имеющие 4 уровня индексации увлажнения, что позволяет отслеживать динамику развития аварийной ситуации и оценивать ее серьезность. Детектор не имеет аналогов в мире.

Специалисты отдела СОДК выполняют следующие работы:

  • периодический контроль состояния сигнальных проводников в период изоляции стыковых соединений и ликвидация неисправностей;
  • удлинение кабельных выводов и установка терминалов и контрольных приборов в точках контроля в соответствии с проектом СОДК;
  • обследование смонтированной СОДК с составлением соответствующего акта о готовности к сдаче;
  • совместная со строительной компанией приемка-передача системы эксплуатирующей организации;
  • консультации по СОДК представителям строительной компании;
  • поиск повреждений системы в гарантийный период по заявкам эксплуатирующей организации.

Проект система оперативного дистанционного контроля СОДК.

В данном проекте запроектирована СОДК, предназначенная для систематического контроля состояния изоляции и оперативного выявления участков с повышенной влажностью изоляции в трубопроводах из ППУ труб.

Принцип действия СОДК импульсного типа основан на измерении электрического сопротивления теплоизоляционного слоя между стальной трубой и двумя медными проводами системы контроля, образующими сигнальную цепь, которая проходит по всей длине трубопровода.

Основные требования к элементам системы СОДК:

1. Расстояние от медного провода до стальной трубы - 15 мм.

2. Контроль сопротивления изоляции:

Сопротивление между сигнальным проводом и стальной трубой (для одной трубы или фасонного элемента - 20 м проводов и менее) должно быть не менее 10 МОм;

Сопротивление изоляции 300 м трубопровода меняется обратно пропорционально;

Для контроля сопротивления изоляции следует использовать напряжение 500 V.

3. Контроль сопротивления сигнальной петли:

Удельное сопротивление медных проводов 0,012-0,015 Ом/м;

Превышение допустимого значения сопротивления сигнальной цепи для соответствующей длины проводов системы контроля указывает на некачественное соединение проводов на стыках.

При производстве предварительно изолированных труб и фасонных изделий в них серийно заложены медные провода системы контроля. В качестве основного "сигнального" используется луженный медный провод белого цвета, который расположен в трубопроводе справа по ходу движения воды (для обратного трубопровода направление как для подающего). Второй провод - голый медный - "транзитный" проходит по всей теплосети без разрывов.

Для систематического контроля состояния изоляции предусмотрено использование переносного детектора повреждений "Вектор 2000" и возможность его подключения к измерительному терминалу "КТ-11", а также локатора - импульсного рефлектометра "Рейс-105Р" для определения точного места повреждения и вида дефекта (намокание изоляции, обрыв сигнального провода) при подключении его к терминалам "КТ-11", "КТ-12" и "КТ-13".

Организация контроля при помощи системы СОДК:

Контроль электрических параметров сигнальной цепи осуществляется отдельно по подающему и обратному трубопроводу.

Закольцовка проводов предусмотрена в концевом элементе системы ОДК.

На трубопроводах с ППУ изоляцией должен осуществляться двухступенчатый контроль увлажнения и состояния изоляции:

На первом уровне необходим постоянный контроль трубопроводов для определения состояния изоляции - производится эксплуатационным персоналом с помощью детектора повреждений, позволяет определить наличие повреждения, для определения местоположения обнаруженного повреждения нужен второй уровень контроля;

На втором уровне контроля контроль должен осуществляться с использованием импульсного рефлектометра (локатора повреждений) и только высококвалифицированным специально обученным персоналом.

Для организации подобного контроля за состоянием ППУ изоляции необходимо:

1. Организовать периодический контроль с использованием переносного детектора повреждений: 2-4 раза в месяц.

2. Организовать полное углубленное периодическое обследование с использованием импульсного рефлектометра: один раз в квартал. Данные обследования заносить в базу данных с целью наблюдения динамики состояния ППУ изоляции.

3. Организовать незамедлительное определение места повреждения после срабатывания детектора и его устранения.

Монтаж системы СОДК:

Проект выполнен в соответствии с "Инструкцией по проектированию, монтажу и эксплуатации системы оперативного дистанционного контроля (СОДК) импульсного типа".

Монтаж стыков трубопроводов и монтаж системы ОДК осуществляет поставщик ПИ-труб - ЗАО "Завод полимерных труб" г. Могилев.

Провода системы контроля соединяются на стыках элементов и выводятся через герметичные кабельные выводы в коммутационные терминалы.

Соединительные кабели от кабельных выводов до ковера (трехжильные NYM3х1,5 и пятижильные NYM 5х1,5) прокладываются в защитных стальных оцинкованных трубах

d = 50 мм. Сварка (пайка) трубы с проложенным в ней кабелем запрещается.

Соединение кабелей выполняется в строгом соответствии с цветовой маркировкой жил, а также в соответствии с паспортом, прилагаемым к каждому терминалу. Кабель от подающего трубопровода следует обязательно маркировать дополнительно (изоляционной лентой) как у основания кабельного вывода, так и на вводе в терминал.

Установка коверов, размещение терминалов и подключение соединительных кабелей производится в соответствии с приведенными в проекте схемами.

В данном проекте протяженность трассы теплосети составляет 229,5 п.м.

Для коммутации сигнальных проводников и подключения приборов контроля используются терминалы следующих типов:

Терминал концевой "КТ-11" - предназначен для коммутации проводников системы ОДК трубопроводов с ППУ изоляцией в контрольных точках; подключения к системе ОДК импульсного рефлектометра. Устанавливается терминал в настенном ящике ковера около места входа теплотрассы в учебный корпус №3 БелГУТа;

Терминал промежуточный "КТ-12" - предназначен для коммутации проводников системы ОДК трубопроводов с ППУ изоляцией в промежуточных точках; подключения к СОДК импульсного рефлектометра. Устанавливается терминал в существующем наземном ящике ковера во дворе учебных корпусов №3 и №4;

Терминал концевой "КТ-13" - предназначен для закольцовки проводников системы ОДК трубопроводов с ППУ-изоляции в концевых точках системы ОДК; подключения к системе ОДК импульсного рефлектометра (локатора). Устанавливается терминал в настенном ящике ковера в подвале учебного корпуса №1.