Теплопроводность конвекция и тепловое излучение. Теплопередача - это что такое? Виды, способы, расчет теплопередачи

В естественных условиях передача внутренней энергии тем теплообмена всегда происходит в строго определенном направлении: от тела с более высокой температурой к телу с более низкой температурой. Когда же температуры тел становятся одинаковыми, наступает состояние теплового равновесия: тела обмениваются энергией в равных количествах.

Совокупность явлений, связанных с переходом тепловой энергии из одних частей пространства в другие, который обусловлен различием температур этих частей, называют в общем случае теплообменом. В природе существует несколько видов теплообмена. Существуют три способа передачи количества теплоты от одного тела к другому: теплопроводность, конвекция и излучение.

        Теплопроводность.

Поместим в пламя спиртовки конец металлического стержня. К стержню на равных расстояниях друг от друга прикрепим с помощью воска несколько спичек. При нагревании одного конца стержня восковые шарики плавятся, и спички одна за другой падают. Это свидетельствует о том, что, внутренняя энергия передается от одного конца стержня к другому.

Рисунок 1 Демонстрация процесса теплопроводности

Выясним причину этого явления.

При нагревании конца стержня интенсивность движения частиц, из которых состоит металл, возрастает, их кинетическая энергия увеличивается. Вследствие хаотичности теплового движения они сталкиваются с более медленными частицами соседнего холодного слоя металла и передают им часть своей энергии. В результате этого внутренняя энергия передается от одного конца стержня к другому.

Передача внутренней энергии от одной части тела к другой в результате теплового движения его частиц называется теплопроводностью.

        Конвекция

Передача внутренней энергии путем теплопроводности происходит главным образом в твердых телах. В жидких и газообразных телах передача внутренней энергии осуществляется и другими способами. Так, при нагревании воды плотность ее нижних, более горячих, слоев уменьшается, а верхние слои остаются холодными и плотность их не изменяется. Под действием сил тяжести более плотные холодные слои воды опускаются вниз, а нагретые поднимаются вверх: происходит механическое перемешивание холодных и нагретых слоев жидкости. Вся вода прогревается. Аналогичные процессы происходят и в газах.

Передача внутренней энергии вследствие механического перемешивания нагретых и холодных слоев жидкости или газа называется конвекцией.

Явление конвекции играет большую роль в природе и технике. Конвекционные потоки вызывают постоянное перемешивание воздуха в атмосфере, благодаря чему состав воздуха во всех местах Земли практически одинаков. Конвекционные течения обеспечивают непрерывное поступление свежих порций кислорода к пламени в процессах горения. Вследствие конвекции происходит выравнивание температуры воздуха в жилых помещениях при отоплении, а также воздушное охлаждение приборов при работе различной радиоэлектронной аппаратуры.

Рисунок 2 Обогрев и выравнивание температуры воздуха в жилых помещениях при отоплении вследствие конвекции

        Излучение

Передача внутренней энергии может происходить и путем электромагнитного излучения. Это легко обнаружить на опыте. Включим в сеть электронагревательную печь. Она хорошо обогревает руку, когда мы подносим ее не только сверху, но и сбоку печи. Теплопроводность воздуха очень мала, а конвекционные потоки поднимаются вверх. В этом случае энергия от раскаленной электрическим током спирали в основном передается способом излучения.

Передача внутренней энергии путем излучения осуществляется не частицами вещества, а частицами электромагнитного поля - фотонами. Они не существуют внутри атомов «в готовом виде», подобно электронам или протонам. Фотоны возникают при переходе электронов из одного электронного слоя в другой, расположенный ближе к ядру, и при этом уносят с собой определенную порцию энергии. Достигая другого тела, фотоны поглощаются его атомами и целиком передают им свою энергию.

Передача внутренней энергии от одного тела к другому вследствие ее переноса частицами электромагнитного поля - фотонами, называется электромагнитным излучением. Любое тело, температура которого выше температуры окружающей среды, излучает свою внутреннюю энергию в окружающее пространство. Количество энергии, излучаемое телом в единицу времени, резко возрастает с повышением его температуры.

Рисунок 3 Опыт, иллюстрирующий передачу внутренней энергии горячего чайника через излучение

Рисунок 4 Излучение от Солнца

        Явления переноса в термодинамически неравновесных системах. Теплопроводность

В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, количества движения. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом количества движения). Для этих явлений перенос энергии, массы и количества движения всегда происходит в направлении, обратном их градиенту, т. е. система приближается к состоянию термодинамического равновесия.

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.

Процесс передачи энергии в форме теплоты подчиняется закону теплопроводности Фурье: количество теплоты q, которое переносится за единицу времени через единицу площади, прямо пропорционально - градиенту температуры, равному скорости изменения температуры на единицу длины х в направлении нормали к этой площади:

, (1)

где λ - коэффициент теплопроводности или теплопроводность. Знак минус показывает, что при теплопроводности энергия переносится в сторону убывания температуры. Теплопроводность λ равна количеству теплоты, переносимой через единицу площади за единицу времени при температурном градиенте, равном единице.

Очевидно, что теплота Q, прошедшая посредством теплопроводности через площадь S за время t, пропорциональна площади S, времени t и градиенту температуры :

Можно показать, что

(2)

где с V - удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), ρ - плотность газа, <υ> - средняя арифметическая скорость теплового движения молекул, <l > - средняя длина свободного пробега.

Т.е. видно от каких причин зависит количество энергии, передаваемое путем теплопроводности, например, из комнаты через стенку на улицу. Очевидно, что из комнаты на улицу передается энергии тем больше, чем больше площадь стенки S, чем больше разность температур Δt в комнате и на улице, чем больше времени t происходит теплообмен между комнатой и улицей и чем меньше толщина стенки (толщина слоя вещества) d: ~.

Кроме того, количество энергии, передаваемое путем теплопроводности, зависит от материала, из которого изготовлена стенка. Различные вещества при одинаковых условиях передают путем теплопроводности разное количество энергии. Количество энергии, которое передается путем теплопроводности через каждую единицу площади слоя вещества за единицу времени при разности температур между его поверхностями в 1°С и при его толщине в 1 м (единицу длины), может служить мерой способности вещества передавать энергию путем теплопроводности. Эту величину называют коэффициентом теплопроводности. Чем больше коэффициент теплопроводности λ, тем больше энергии передается слоем вещества. Наибольшей теплопроводностью обладают металлы, несколько меньшей – жидкости. Наименьшей теплопроводностью обладает сухой воздух и шерсть. Этим и объясняются теплоизолирующие свойства одежды у человека, перьев у птицы и шерсти у животных.

Теплопроводность - переход энергии дельта Q от более нагретых T1 частей тела к менее нагретым T2.

Закон теплопроводности: теплота дельта Q, переносимая через элемент площади дельта S за время дельта t, пропорциональна градиенту температуры dT/dx, площади дельта S и времени дельта t

Дельта Q = -X * (dT/dx) * дельта S * дельта t

X - коэффициент теплопроводности.

Суть теплопроводности

Теплопроводность происходит из-за движения тепла и взаимодействия его составляющих частиц друг с другом. Процесс теплопроводности приводит к тому, чтобы температура всего тела была одинакова.

Как правило энергия, которая подлежит переносу, определяется в качестве плотности теплового потока, пропорциональному градиенту температуры. Такой коэффициент пропорциональности называется коэффициентом теплопроводности.

Теплопроводность это свойство тел передавать тепло, основанное на теплообмене которое происходит между атомами и молекулами тела.

При теплопроводности не происходит перенос вещества от одного конца тела к другому. У жидкостей теплопроводность небольшая, исключение состовляет ртуть и расплавленные металлы.

Все это из-за того что молекулы расположены далеко друг от друга в отличии от твердых тел. У газов теплопроводность еще меньше т.к. его молекулы находятся на еще большем расстоянии, чем у жидкостей.

Плохой теплопроводностью обладает шерсть, волосы, бумага. Это связано с тем, что между волокнами этих веществ воздух. Теплопроводность у разных веществ различна

Дома строят из кирпича и бревен, потому что они обладают плохой теплопроводностью и могут сохранить прохладу или тепло в помещении. Для сковородок делают пластмассовые ручки для того, чтобы люди не обжигались, потому что они обладают плохой теплопроводностью.

Суть конвекции

Конвекция - еще один вид теплопередачи, при которой энергия переноситься самими струями жидкостей и газа.

Пример: в отапливаемой комнате из за конвенции теплый воздух поднимается вверх, а холодный опускается вниз.

Тепловой поток Q - колличество теплоты W, ДЖ проходящие за время Т,С через данную поверхность в направлении нормали к ней

Если колличество переданной теплоты W отнести к площади поверхности F и времени Т то получим величину:

Плотность теплового потока измеряется в Вт/м2

Существует два вида конвекции - естественная и вынужденная.

К естественной конвекции относится нагревание помещения, нагревание тела во время жары (естественным путем).

К вынужденной конвекции относится мешание чая ложкой, использование вентилятора, что бы охладить помещение (неестественным путем)

Конвекция не происходит если нагревать жидкости сверху (правильно снизу), потому что нагретые слои не могут опуститься ниже холодных т.к. они более тяжелее.




























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Познакомить учащихся с видами теплопередачи.
  • Формировать умение объяснять теплопроводность тел с точки зрения строения вещества; уметь анализировать видеоинформацию; объяснять наблюдаемые явления.

Тип урока: комбинированный урок.

Демонстрации:

1. Перемещение тепла по металлическому стержню.
2. Видео демонстрация эксперимента по сравнению теплопроводности серебра, меди и железа.
3. Вращение бумажной вертушки над включенной лампой или плиткой.
4. Видео демонстрация возникновения конвекционных потоков при нагревании воды с марганцовкой.
5. Видео демонстрация по излучению тел с темной и светлой поверхностью.

ХОД УРОКА

I. Организационный момент

II. Сообщение темы и целей урока

На предыдущем уроке вы узнали, что внутреннюю энергию можно изменить путем совершения работы или теплопередачей. Сегодня на уроке мы рассмотрим, как происходит изменение внутренней энергии теплопередачей.
Попробуйте объяснить значение слова «теплопередача» (слово «теплопередача» подразумевает передачу тепловой энергии). Существует три способа передачи теплоты, но называть их я не буду, вы сами их назовете, когда решите ребусы.

Ответы: теплопроводность, конвекция, излучение.
Познакомимся с каждым видом теплопередачи отдельно, и пусть девизом нашего урока станут слова М.Фарадея: «Наблюдать, изучать, работать».

III. Изучение нового материала

1. Теплопроводность

Ответьте на вопросы: (слайд 3)

1. Что произойдет, если в горячий чай опустим холодную ложку? (Через некоторое время она нагреется).
2. Почему холодная ложка нагрелась? (Чай отдал часть своего тепла ложке, а часть окружающему воздуху).
Вывод: Из примера ясно, что тепло может передаваться от тела, более нагретого к телу менее нагретому (от горячей воды к холодной ложке). Но энергия передавалась и по самой ложке – от ее нагретого конца к холодному.
3. В результате чего происходит перенос тепла от нагретого конца ложки к холодному? (В результате движения и взаимодействия частиц)

Нагревание ложки в горячем чае - пример теплопроводности.

Теплопроводность – перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.

Проведем опыт:

Закрепим конец медной проволоки в лапке штатива. Воском к проволоке прикреплены гвоздики. Будем нагревать свободный конец проволоки свечей или на пламени спиртовки.

Вопросы: (слайд 4)

1. Что наблюдаем? (Гвоздики начинают постепенно один за другим отпадать, сначала те, которые ближе к пламени).
2. Как происходит передача тепла? (От горячего конца проволоки к холодному).
3. Как долго будет происходить передача тепла по проволоке? (Пока проволока вся не нагреется, т. е пока температура во всей проволоке не выровняется)
4. Что можно сказать про скорость движения молекул на участке, расположенном ближе к пламени? (Скорость движения молекул увеличивается)
5. Почему нагревается следующий участок проволоки? (В результате взаимодействия молекул скорость движения молекул на следующем участке также увеличивается и температура данной части возрастает)
6. Влияет ли расстояние между молекулами на скорость передачи тепла? (Чем меньше расстояние между молекулами, тем с большей скоростью идет перенос тепла)
7. Вспомните расположение молекул в твердых телах, жидкостях и газах. В каких телах процесс переноса энергии будет происходить быстрее? (Быстрее в металлах, затем в жидкостях и газах).

Посмотрите демонстрацию эксперимента и подготовьтесь ответить на мои вопросы.

Вопросы: (слайд 5)

1. По какой пластине теплота распространяется быстрее, а по какой медленнее?
2. Сделайте вывод о теплопроводности данных металлов. (Лучшая теплопроводность у серебра и меди, несколько хуже у железа)

Обратите внимание, что при передаче тепла в данном случае переноса тела не происходит.

Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).

Запишем основные особенности теплопроводности: (слайд 7)

  • в твердых телах, жидкостях и газах;
  • само вещество не переносится;
  • приводит к выравниванию температуры тела;
  • разные тела – разная теплопроводность

Примеры теплопроводности : (слайд 8)

1. Снег - пористое, рыхлое вещество, в нем содержится воздух. Поэтому снег обладает плохой теплопроводностью и хорошо защищает землю, озимые посевы, плодовые деревья от вымерзания.
2. Кухонные прихватки сшиты из материала, который обладает плохой теплопроводностью. Ручки чайников, кастрюль делают из материалов обладающих плохой теплопроводностью. Все это защищает руки от ожогов, при прикосновении к горячим предметам.
3. Вещества с хорошей теплопроводностью (металлы) используют для быстрого нагревания тел или деталей.

2. Конвекция

Отгадайте загадки:

1) Загляните под окошко –
Там растянута гармошка,
Но гармошке не играет –
Нам квартиру согревает... (батарея)

2) Наша толстая Федора
наедается не скоро.
А зато когда сыта,
От Федоры – теплота... (печь)

Батареи, печи, радиаторы отопления используются человеком для обогрева жилых помещений, а точнее нагревания воздуха в них. Происходит это благодаря конвекции – следующему виду теплопередачи.

Конвекция – это перенос энергии струями жидкости или газа. (Слайд 9)
Попробуем объяснить, как происходит конвекция в жилых помещениях.
Воздух, соприкасаясь с батареей, от нее нагревается, при этом он расширяется, его плотность становится меньше плотности холодного воздуха. Теплый воздух, как более легкий, поднимается вверх под действием силы Архимеда, а тяжелый холодный воздух опускается вниз.
Затем снова: более холодный воздух доходит до батареи, нагревается, расширяется, становится легче и под действием Архимедовой силы поднимается вверх и т.д.
Благодаря такому движению воздух в комнате прогревается.

Бумажная вертушка, помещенная над включенной лампой, начинает вращаться. (Слайд 10)
Попробуйте объяснить, как это происходит? (Холодный воздух при нагревании у лампы становится теплым и поднимается вверх, при этом вертушка вращается).

Точно также происходит нагревание жидкости. Посмотрите эксперимент по наблюдению конвекционных потоков при нагревании воды (с помощью марганцовки). (Слайд 11)

Обратите внимание, что в отличие от теплопроводности, при конвекции происходит перенос вещества и в твердых телах конвекция не происходит.

Различают два вида конвекции: естественную и вынужденную.
Нагревание жидкости в кастрюле или воздуха в комнате – это примеры естественной конвекции. Для ее возникновения вещества нужно нагревать снизу или охлаждать сверху. Почему именно так? Если нагревать будем сверху, то куда будут перемещаться нагретые слои воды, а куда холодные? (Ответ: никуда, так как нагретые слои и так уже наверху, а холодные слои так и останутся внизу)
Вынужденная конвекция наблюдается, если жидкость перемешивать ложкой, насосом или вентилятором.

Особенности конвекции: (слайд 12)

  • возникает в жидкостях и газах, невозможна в твердых телах и вакууме;
  • само вещество переносится;
  • нагревать вещества нужно снизу.

Примеры конвекции: (слайд 13)

1) холодные и теплые морские и океанические течения,
2) в атмосфере, вертикальные перемещения воздуха приводят к образованию облаков;
3) охлаждение или нагревание жидкостей и газов в различных технических устройствах, например в холодильниках и др., обеспечивается водяное охлаждение двигателей
внутреннего сгорания.

3. Излучение

(Слайд 14)

Всем известно, что Солнце основной источник тепла на Земле. Земля находится от него на расстоянии 150 млн. км. Как передается тепло от Солнца на Землю?
Между Землей и Солнцем за пределами нашей атмосферы все пространство – вакуум. А нам известно, что в вакууме теплопроводность и конвекция происходить не могут.
Каким способом происходит передача тепла? Здесь осуществляется еще один вид теплопередачи – излучение.

Излучение – это теплообмен, при котором энергия переносится электромагнитными лучами.

Отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум.

Посмотрите видеофрагмент об излучении (слайд 15).

Излучают энергию все тела: тело человека, печь, электрическая лампа.
Чем выше температура тела, тем сильнее его тепловое излучение.

Тела не только излучают энергию, но и поглощают ее.
(слайд 16) Причем темные поверхности лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность.

Особенности излучения (слайд 17):

  • происходит в любом веществе;
  • чем выше температура тела, тем интенсивнее излучение;
  • происходит в вакууме;
  • темные тела лучше поглощают излучение, чем светлые и лучше излучают.

Примеры использования излучения тел (слайд 18):

поверхности ракет, дирижаблей, воздушных шаров, спутников, самолётов, окрашивают серебристой краской, чтобы они не нагревались Солнцем. Если наоборот надо использовать солнечную энергию, то части приборов окрашивают в темный цвет.
Люди зимой носят темные одежды (черного, синего, коричного цвета) в них теплее, а летом светлые (бежевые, белые цвета). Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются.

IV. Закрепление полученных знаний на примерах задач

Игра «Попробуй, объясни» , (слайды 19-25).

Перед вами игровое поле с шестью заданиями, вы можете выбрать любое. После выполнения всех заданий вам откроется мудрое высказывание и тот, кто его очень часто произносит с экранов телевизоров.

1. В каком доме теплее зимой, если толщина стен одинакова? Теплее в деревянном доме, так как дерево содержит 70% воздуха, а кирпич 20%. Воздух - плохой проводник тепла. В последнее время в строительстве применяют «пористые» кирпичи для уменьшения теплопроводности.

2. Каким способом происходит передача энергии от источника тепла к мальчику? Мальчику, сидящему у печки, энергия в основном передается теплопроводностью.

3. Каким способом происходит передача энергии от источника тепла к мальчику?
Мальчику, лежащему на песке, энергия от солнца передается излучением, а от песка теплопроводностью.

4. В каком из этих вагонов перевозят скоропортящиеся продукты? Почему? Скоропортящиеся продукты перевозят в вагонах, окрашенных в белый цвет, так как такой вагон в меньшей степе­ни нагревается солнечными лучами.

5. Почему водоплавающие птицы и другие животные не замерзают зимой?
Мех, шерсть, пух обладают плохой теплопроводностью (наличие между волокнами воздуха), что позволяет телу животного сохранять вырабатываемую организмом энергию и защищаться от охлаждения.

6. Почему оконные рамы делают двойными?
Между рамами содержится воздух, который обладает плохой теплопроводностью и защищает от потерь тепла.

«Мир интересней, чем нам кажется», Александр Пушной, программа «Галилео».

V. Итог урока

– С какими видами теплопередачи мы познакомились?
– Определите, какой из видов теплопередачи играет основную роль в следующих ситуациях:

а) нагревание воды в чайнике (конвекция);
б) человек греется у костра (излучение);
в) нагревание поверхности стола от включенной настольной лампы (излучение);
г) нагревание металлического цилиндра, опущенного в кипяток (теплопроводность).

Разгадайте кроссворд (слайд 26):

1. Величина, от которой зависит интенсивность излучения.
2. Вид теплопередачи, который может осуществляться в вакууме.
3. Процесс изменения внутренней энергии без совершения работы над телом или самим телом.
4. Основной источник энергии на Земле.
5. Смесь газов. Обладает плохой теплопроводностью.
6. Процесс превращения одного вида энергии в другой.
7. Металл, имеющий самую хорошую теплопроводностью.
8. Разреженный газ.
9. Величина, обладающая свойством сохранения.
10. Вид теплопередачи, который сопровождается переносом вещества.

Разгадав кроссворд, вы получили еще одно слово, которое является синонимом к слову «теплопередача» – это слово… («теплообмен»). «Теплопередача» и «теплообмен» – одинаковые по смыслу слова. Используйте их, заменяя одно другим.

VI. Домашнее задание

§ 4, 5, 6, Упр. 1 (3), Упр. 2(1), Упр. 3(1) – письменно.

VII. Рефлексия

В конце урока предлагаем учащимся обсудить урок: что понравилось, что хотелось бы изменить, оценить свое участие в уроке.

Прозвенит сейчас звонок,
Подошел к концу урок.
До свидания, друзья,
Отдыхать пришла пора.

Лекция 11. Способы переноса теплоты. Температурное поле. Теплопроводность. Конвекция. Излучение. Теплообмен. Теплопередача.

1. Латыпов Р.Ш., Шарафиев Р.Г. Техническая термодинамика и энерготехнология химических производств.-М.:Энергоатомиздат, 1998.-344 с.

2. Баскаков А.П. Теплотехника.-М.:Энергоатомиздат, 1991.-244 с.

3. Алабовский А.Н., Константинов С.М., Недужий А.Н. Теплотехника.-Киев: Выща Школа, Головное издательство, 1986.-255 с.

4. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. Справочник.-М.: Издательство МЭИ, 1994.- 168 с.

5. Лариков Н.Н. Теплотехника: Учебник для вузов. -3-е изд., перераб. и дополн.-М.; Стройиздат, 1985 -432 с.ил.

Лекция 11. Способы переноса теплоты. Температурное поле. Теплопроводность. Конвекция. Излучение. Теплообмен. Теплопередача.

Теплота - кинетическая часть внутренней энергии вещества, определяемая интенсивным хаотическим движением молекул и атомов, из которых это вещество состоит. Мерой интенсивности движения молекул является температура. Количество теплоты, которым обладает тело при данной температуре, зависит от его массы; например, при одной и той же температуре в большой чашке с водой заключается больше теплоты, чем в маленькой, а в ведре с холодной водой его может быть больше, чем в чашке с горячей водой (хотя температура воды в ведре и ниже). Теплота играет важную роль в жизни человека, в том числе и в функционировании его организма. Часть химической энергии, содержащейся в пище, превращается в теплоту, благодаря чему температура тела поддерживается вблизи 37 градусов Цельсия. Тепловой баланс тела человека зависит также от температуры окружающей среды, и люди вынуждены расходовать много энергии на обогрев жилых и производственных помещений зимой и на охлаждение их летом. Большую часть этой энергии поставляют тепловые машины, например котельные установки и паровые турбины электростанций, работающих на ископаемом топливе (угле, нефти) и вырабатывающих электроэнергию.

До конца 18 в. теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Позднее Б.Румфорд, Дж.Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом – это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика.

Теплопередача – это процесс переноса теплоты внутри тела или от одного тела к другому, обусловленный разностью температур. Интенсивность переноса теплоты зависит от свойств вещества, разности температур и подчиняется экспериментально установленным законам природы. Чтобы создавать эффективно работающие системы нагрева или охлаждения, разнообразные двигатели, энергоустановки, системы теплоизоляции, нужно знать принципы теплопередачи. В одних случаях теплообмен нежелателен (теплоизоляция плавильных печей, космических кораблей и т.п.), а в других он должен быть как можно больше (паровые котлы, теплообменники, кухонная посуда).

Теплопередача – это теплообмен между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними. Теплопередача включает в себя теплоотдачу от более горячей жидкости к стенке, теплопроводность в стенке, теплоотдачу от стенки к более холодной подвижной среде. Интенсивность передачи теплоты при теплопередаче характеризуется коэффициентом теплопередачи k, численно равным количеству теплоты, которое передаётся через единицу поверхности стенки в единицу времени при разности температур между жидкостями в 1 К; размерность k - вт/ (м 2 ․К) [ккал/м 2 ․°С)]. Величина R, обратная коэффициенту теплопередачи, называется полным термическим сопротивлением. Например, R однослойной стенки

где α 1 и α 2 - коэффициенты теплоотдачи от горячей жидкости к поверхности стенки и от поверхности стенки к холодной жидкости; δ - толщина стенки; λ - коэффициент теплопроводности.

Существуют три основных вида теплопередачи : теплопроводность, конвекция и лучистый теплообмен.

Теплопроводность. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное). Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ /Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м 2) и коэффициента теплопроводности материала [в соответствующих единицах Вт/(мDК)]. Соотношение между этими величинами было выведено французским математиком Ж.Фурье и имеет следующий вид:

где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье ; знак «минус» в нем указывает на то, что теплотапередается в направлении, обратном градиенту температуры.Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну извеличин – коэффициент теплопроводности, площадь или градиент температуры. Дляздания в зимних условиях последние величины практически постоянны, а поэтомудля поддержания в помещении нужной температуры остается уменьшатьтеплопроводность стен, т.е. улучшать их теплоизоляцию.

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества. Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.



Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха. Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона

q = hA (T W - T ¥),

где q – тепловой поток (измеряемый в ваттах), A – площадь поверхности источника тепла (в м 2), T W и T ¥ – температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м 2 хК). Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность – это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные. Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса. Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.

Лучистый теплообмен. Третий вид теплопередачи – лучистый теплообмен – отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение – это один из видов электромагнитного излучения. Другие его виды – радиоволновое, ультрафиолетовое и гамма-излучения – возникают в отсутствие разности температур. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.

Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана – Больцмана

где, как и ранее, q – тепловой поток (в джоулях в секунду, т.е. в Вт), A – площадь поверхности излучающего тела (в м 2), а T 1 и T 2 – температуры (в кельвинах) излучающего тела иокружения, поглощающего это излучение. Коэффициент s называетсяпостоянной Стефана – Больцмана и равен (5,66961 х 0,00096)х10 –8 Вт/(м 2 DК 4).

Представленный закон теплового излучения справедлив лишь для идеального излучателя – так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана – Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального.

Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей – это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте.

Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м 2 . Солнечная энергия – источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд.

Теплообмен - это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
Теплообмен всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой .
Когда температуры тел выравниваются, теплообмен прекращается.
Теплообмен может осуществляться тремя способами:

  1. теплопроводностью
  2. конвекцией
  3. излучением

Теплопроводность

Теплопроводность - явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.
Наибольшей теплопроводностью обладают металлы - она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец , но и здесь теплопроводность в десятки раз больше, чем у воды.
При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.
Нагревание кастрюли на электрической плитке происходит через теплопроводность.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью .
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность .
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь .
Теплопроводность у различных веществ различна.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность - это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.

Конвекция

Конвекция - это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.
Пример явления конвекции : небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом. Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух. В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.
Различают два вида конвекции:

  • естественная (или свободная)
Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.
  • вынужденная
Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д.
Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.
Конвекция в твердых телах происходить не может.

Излучение

Излучение - электромагнитное излучение, испускаемое за счет внутренней энергии веществом, находящимся при определенной температуре.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно черного тела, описывается законом Стефана - Больцмана.
Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Передача энергии излучением отличается от других видов теплопередачи: она может осуществляться в полном вакууме .
Излучают энергию все тела: и сильно нагретые, и слабо, например тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передает оно путем излучения. При этом энергия частично поглощается этими телами, а частично отражается. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.
Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. В то же время тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в темном.